Advanced Search
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Jianhao TAN, Wang YIN, Liming LIU, Yaonan WANG. DenseNet-siamese Network with Global Context Feature Module for Object Tracking[J]. Journal of Electronics & Information Technology, 2021, 43(1): 179-186. doi: 10.11999/JEIT190788
Citation: Jianhao TAN, Wang YIN, Liming LIU, Yaonan WANG. DenseNet-siamese Network with Global Context Feature Module for Object Tracking[J]. Journal of Electronics & Information Technology, 2021, 43(1): 179-186. doi: 10.11999/JEIT190788

DenseNet-siamese Network with Global Context Feature Module for Object Tracking

doi: 10.11999/JEIT190788
  • Received Date: 2019-10-16
  • Rev Recd Date: 2020-11-13
  • Available Online: 2020-11-19
  • Publish Date: 2021-01-15
  • In recent years, the method of extracting depth features from siamese networks has become one of the hotspots in visual tracking because of its balanced in accuracy and speed. However, the traditional siamese network does not extract the deeper features of the target to maintain generalization performance, and most siamese architecture networks usually process one local neighborhood at a time, which makes the appearance model local and non-robust to appearance changes. In view of this problem, a densenet-siamese network with global context feature module for object tracking algorithm is proposed. This paper innovatively takes densenet network as the backbone of siamese network, adopts a new design scheme of dense feature reuse connection network, which reduces the parameters between layers while constructing deeper network, and enhances the generalization performance of the algorithm. In addition, in order to cope with the appearance changes in the process of object tracking, the Global Context feature Module (GC-Model) is embedded in the siamese network branches to improve the tracking accuracy. The experimental results on the VOT2017 and OTB50 datasets show that comparing with the current mainstream tracking algorithms, the Tracker has obvious advantages in tracking accuracy and robustness, and has good tracking effect in scale change, low resolution, occlusion and so on.

  • loading
  • 孙彦景, 石韫开, 云霄, 等. 基于多层卷积特征的自适应决策融合目标跟踪算法[J]. 电子与信息学报, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971

    SUN Yanjing, SHI Yunkai, YUN Xiao, et al. Adaptive strategy fusion target tracking based on multi-layer convolutional features[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971
    HENRIQUE J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/tpami.2014.2345390
    DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318.
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]. European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 850–865. doi: 10.1007/978-3-319-48881-3_56.
    VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5000–5008. doi: 10.1109/CVPR.2017.531.
    GUO Qing, WEI Feng, ZHOU Ce, et al. Learning dynamic Siamese network for visual object tracking[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1781–1789. doi: 10.1109/ICCV.2017.196.
    HE Anfeng, LUO Chong, TIAN Xinmei, et al. A twofold siamese network for real-time object tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4834–4843. doi: 10.1109/CVPR.2018.00508.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
    侯志强, 陈立琳, 余旺盛, 等. 基于双模板Siamese网络的鲁棒视觉跟踪算法[J]. 电子与信息学报, 2019, 41(9): 2247–2255. doi: 10.11999/JEIT181018

    HOU Zhiqiang, CHEN Lilin, YU Wangsheng, et al. Robust visual tracking algorithm based on Siamese network with dual templates[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2247–2255. doi: 10.11999/JEIT181018
    WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803. doi: 10.1109/CVPR.2018.00813.
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    HU Jie, SHEN Li, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 9423–9433.
    CAO Yue, XU Jiarui, LIN S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea (South), 2019: 1971–1980. doi: 10.1109/ICCVW.2019.00246.
    刘畅, 赵巍, 刘鹏, 等. 目标跟踪中辅助目标的选择、跟踪与更新[J]. 自动化学报, 2018, 44(7): 1195–1211.

    LIU Chang, ZHAO Wei, LIU Peng, et al. Auxiliary objects selecting, tracking and updating in target tracking[J]. Acta Automatica Sinica, 2018, 44(7): 1195–1211.
    ABDELPAKEY M H, SHEHATA M S, and MOHAMED M M. DensSiam: End-to-end densely-Siamese network with self-attention model for object tracking[C]. The 13th International Symposium on Visual Computing, Las Vegas, USA, 2018: 463–473.
    KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2017 challenge results[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1949–1972. doi: 10.1109/ICCVW.2017.230.
    LI Yuhong and ZHANG Xiaofan. SiamVGG: Visual tracking using deeper Siamese networks[J]. arXiv: 2019, 1902.02804.
    WANG Qiang, GAO Jin, XING Junliang, et al. Dcfnet: Discriminant correlation filters network for visual tracking[J]. arXiv: 2017, 1704.04057.
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409. doi: 10.1109/CVPR.2016.156.
    HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109. doi: 10.1109/TPAMI.2015.2509974
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (1684) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return