Advanced Search
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Buhong WANG, Peng LUO, Tengyao LI, Jiwei TIAN, Fute SHANG. ADS-B Anomalous Data Detection Model Based on PSO-MKSVDD[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2727-2734. doi: 10.11999/JEIT190767
Citation: Buhong WANG, Peng LUO, Tengyao LI, Jiwei TIAN, Fute SHANG. ADS-B Anomalous Data Detection Model Based on PSO-MKSVDD[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2727-2734. doi: 10.11999/JEIT190767

ADS-B Anomalous Data Detection Model Based on PSO-MKSVDD

doi: 10.11999/JEIT190767
Funds:  The National Natual Science Foundation of China (61902426)
  • Received Date: 2019-10-08
  • Rev Recd Date: 2020-04-04
  • Available Online: 2020-04-29
  • Publish Date: 2020-11-16
  • As a new generation of Air Traffic Management(ATM) communication protocol, Automatic Dependent Surveillance-Broadcast(ADS-B) is the key technology of ATM monitoring system in the future. At present, the security of ADS-B is challenged because it broadcasts data in plaintext format. Because ADS-B is susceptible to spoofing, the difference between ADS-B position data and synchronous Secondary Surveillance Radar(SSR) data is taken as sample data. Using Multi-Kernel Support Vector Data Description(MKSVDD) to train samples, a hypersphere classifier is obtained, which can detect anomalous data in ADS-B test samples. In addition, Particle Swarm Optimization (PSO) is used to optimize GaussLapl and GaussTanh MKSVDD penalty factors, coefficients of multi-kernel functions and kernel parameters.The performance of anomaly detection is improved. Experimental results show that PSO-MKSVDD can detect anomalous data of random position deviation, fixed position deviation, Denial Of Service(DOS) attack and replay attack. In addition, compared with other machine learning and deep learning methods, this model has better adaptability and better recall rate and detection rate of anomaly detection.It is proved that this model can be used to detect ADS-B anomalous data.
  • loading
  • STROHMEIER M, SCHAFER M, LENDERS V, et al. Realities and challenges of nextgen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111–118. doi: 10.1109/MCOM.2014.6815901
    ZHANG Jun, LIU Wei, and ZHU Yanbo. Study of ADS-B data evaluation[J]. Chinese Journal of Aeronautics, 2011, 24(4): 461–466. doi: 10.1016/s1000-9361(11)60053-8
    MCCALLIE D, BUTTS J, and MILLS R. Security analysis of the ADS-B implementation in the next generation air transportation system[J]. International Journal of Critical Infrastructure Protection, 2011, 4(2): 78–87. doi: 10.1016/j.ijcip.2011.06.001
    STROHMEIER M, LENDERS V, and MARTINOVIC I. On the security of the automatic dependent surveillance-broadcast protocol[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1066–1087. doi: 10.1109/comst.2014.2365951
    WESSON K D, HUMPHREYS T E, and EVANS B L. Can cryptography secure next generation air traffic surveillance?[J/OL]. IEEE Security & Privacy. http://radionavlab.ae.utexas.edu/images/stories/files/papers/adsb_for_submission.pdf, 2014.
    BAEK J, BYON Y J, HABLEEL E, et al. Making air traffic surveillance more reliable: A new authentication framework for automatic dependent surveillance-broadcast (ADS-B) based on online/offline identity-based signature[J]. Security and Communication Networks, 2015, 8(5): 740–750. doi: 10.1002/sec.1021
    MONTEIRO M. Detecting malicious ADS-B broadcasts using wide area multilateration[C]. The IEEE/AIAA 34th Digital Avionics Systems Conference, Prague, Czekh, 2015. doi: 10.1109/DASC.2015.7311579.
    NIJSURE Y A, KADDOUM G, GAGNON G, et al. Adaptive air-to-ground secure communication system based on ADS-B and wide-area multilateration[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3150–3165. doi: 10.1109/TVT.2015.2438171
    SUN J, ELLERBROEK J, and HOEKSTRA J M. Modeling aircraft performance parameters with open ADS-B data[C]. The 12th USA/Europe Air Traffic Management Research and Development Seminar, Seattle, USA, 2017.
    HABLER E and SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B Messages[J]. Computers & Security, 2018, 78: 155–173. doi: 10.1016/j.cose.2018.07.004
    丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220

    DING Jianli, ZOU Yunkai, WANG Jing, et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220
    王振昊, 王布宏. 基于SVDD的ADS-B异常数据检测[J]. 河北大学学报: 自然科学版, 2019, 39(3): 323–329. doi: 10.3969/j.issn.1000-1565.2019.03.015

    WANG Zhenhao and WANG Buhong. ADS-B anomaly data detection based on SVDD[J]. Journal of HeBei University:Natural Science Edition, 2019, 39(3): 323–329. doi: 10.3969/j.issn.1000-1565.2019.03.015
    TAX D M J and DUIN R P W. Support vector data description[J]. Machine Language, 2004, 54(1): 45–66. doi: 10.1023/b:Mach.0000008084.60811.49
    GÖNEN M, and ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12: 2211–2268.
    ÖZÖĞÜR-AKYÜZ S and WEBER G W. On numerical optimization theory of infinite kernel learning[J]. Journal of Global Optimization, 2010, 48(2): 215–239. doi: 10.1007/s10898-009-9488-x
    殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
    钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777

    QIAN Yaguan, LU Hongbo, JI shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (3335) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return