Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Bin ZHAO, Chunping WANG, Qiang FU. Multi-scale Pedestrian Detection in Infrared Images with Salient Background-awareness[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2524-2532. doi: 10.11999/JEIT190761
Citation: Bin ZHAO, Chunping WANG, Qiang FU. Multi-scale Pedestrian Detection in Infrared Images with Salient Background-awareness[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2524-2532. doi: 10.11999/JEIT190761

Multi-scale Pedestrian Detection in Infrared Images with Salient Background-awareness

doi: 10.11999/JEIT190761
  • Received Date: 2019-09-30
  • Rev Recd Date: 2020-05-13
  • Available Online: 2020-05-20
  • Publish Date: 2020-10-13
  • The infrared imaging system of Ultrawide Field Of View (U-FOV) has large monitoring range and is not limited by illumination, but there are diverse scales and abundant small objects. For accurately detecting them, a multi-scale infrared pedestrian detection method is proposed with the ability of background-awareness, which can improve the detection performance of small objects and reduce the redundant computation. Firstly, a four scales feature pyramid network is constructed to predict object independently and supplement detail features with higher resolution. Secondly, attention module is integrated into the horizontal connection of feature pyramid structure to generate salient features, suppress feature response of irrelevant areas and enhance the object features. Finally, the anchor mask generation subnetwork is constructed on the basis of salient coefficient to the location of the anchors, to eliminate the flat background, and to improve the processing efficiency. The experimental results show that the salient generation subnetwork only increases the processing time by 5.94%, and has the lightweight characteristic. The Average-Precision is 93.20% on the U-FOV infrared pedestrian dataset, 26.49% higher than that of YOLOv3. Anchor box constraint strategy can save 18.05% of processing time. The proposed method is lightweight and accurate, which is suitable for detecting multi-scale infrared objects in the U-FOV camera.
  • loading
  • BLOISI D D, PREVITALI F, PENNISI A, et al. Enhancing automatic maritime surveillance systems with visual information[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 824–833. doi: 10.1109/TITS.2016.2591321
    KANG J K, HONG H G, and PARK K R. Pedestrian detection based on adaptive selection of visible light or far-infrared light camera image by fuzzy inference system and convolutional neural network-based verification[J]. Sensors, 2017, 17(7): 1598. doi: 10.3390/s17071598
    KIM S, SONG W J, and KIM S H. Infrared variation optimized deep convolutional neural network for robust automatic ground target recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 195–202. doi: 10.1109/CVPRW.2017.30.
    王晨, 汤心溢, 高思莉. 基于人眼视觉的红外图像增强算法研究[J]. 激光与红外, 2017, 47(1): 114–118. doi: 10.3969/j.issn.1001-5078.2017.01.022

    WANG Chen, TANG Xinyi, and GAO Sili. Infrared image enhancement algorithm based on human vision[J]. Laser &Infrared, 2017, 47(1): 114–118. doi: 10.3969/j.issn.1001-5078.2017.01.022
    MUNDER S, SCHNORR C, and GAVRILA D M. Pedestrian detection and tracking using a mixture of view-based shape-texture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 333–343. doi: 10.1109/TITS.2008.922943
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893. doi: 10.1109/CVPR.2005.177.
    ZHANG Shanshan, BAUCKHAGE C, and CREMERS A B. Informed haar-like features improve pedestrian detection[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 947–954. doi: 10.1109/CVPR.2014.126.
    WATANABE T and ITO S. Two co-occurrence histogram features using gradient orientations and local binary patterns for pedestrian detection[C]. The 2nd IAPR Asian Conference on Pattern Recognition, Naha, Japan, 2013: 415–419. doi: 10.1109/ACPR.2013.117.
    余春艳, 徐小丹, 钟诗俊. 面向显著性目标检测的SSD改进模型[J]. 电子与信息学报, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118

    YU Chunyan, XU Xiaodan, and ZHONG Shijun. An improved SSD model for saliency object detection[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118
    LIU Songtao, HUANG Di, and WANG Yunhong. Adaptive NMS: Refining pedestrian detection in a crowd[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6452–6461. doi: 10.1109/CVPR.2019.00662.
    LIU Wei, LIAO Shengcai, REN Weiqiang, et al. Center and scale prediction: A box-free approach for pedestrian and face detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Los Angeles, USA, 2019: 5187–5196.
    车凯, 向郑涛, 陈宇峰, 等. 基于改进Fast R-CNN的红外图像行人检测研究[J]. 红外技术, 2018, 40(6): 578–584. doi: 10.11846/j.issn.1001_8891.201806010

    CHE Kai, XIANG Zhengtao, CHEN Yufeng, et al. Research on infrared image pedestrian detection based on improved fast R-CNN[J]. Infrared Technology, 2018, 40(6): 578–584. doi: 10.11846/j.issn.1001_8891.201806010
    王殿伟, 何衍辉, 李大湘, 等. 改进的YOLOv3红外视频图像行人检测算法[J]. 西安邮电大学学报, 2018, 23(4): 48–52. doi: 10.13682/j.issn.2095-6533.2018.04.008

    WANG Dianwei, HE Yanhui, LI Daxiang, et al. An improved infrared video image pedestrian detection algorithm[J]. Journal of Xi'an University of Posts and Telecommunications, 2018, 23(4): 48–52. doi: 10.13682/j.issn.2095-6533.2018.04.008
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. http://arxiv.org/abs/1804.02767, 2018.
    郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117

    GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
    CHEN Long, ZHANG Hanwang, XIAO Jun, et al. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6298–6306. doi: 10.1109/CVPR.2017.667.
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. doi: 10.1109/TPAMI.2011.155
    FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv, 2017, 1701.06659.
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    BERG A, AHLBERG J, and FELSBERG M. A thermal object tracking benchmark[C]. The 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1–6. doi: 10.1109/AVSS.2015.7301772.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. Advances in Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2384) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return