Advanced Search
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Yingchun WU, Yumei WANG, Anhong WANG, Xianling ZHAO. Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
Citation: Yingchun WU, Yumei WANG, Anhong WANG, Xianling ZHAO. Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723

Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering

doi: 10.11999/JEIT190723
Funds:  The National Natural Science Foundation of China (61601318), The Shanxi Science Foundation of Applied Foundational Research (201601D021078), The Fund of Shanxi Key Subjects Construction, The Collaborative Innovation Center of Internet+3D Printing in Shanxi Province, The Key Innovation Team of Shanxi 1331 Project, The Scientific and Technological Innovation Team of Shanxi Province (201705D131025), The Youth Foundation of Taiyuan University of Science and Technology (20132023), The Foundation of China Scholarship Council
  • Received Date: 2019-09-17
  • Rev Recd Date: 2020-07-13
  • Available Online: 2020-07-22
  • Publish Date: 2020-09-27
  • Affected by the micro-lens geometric calibration accuracy of the light field camera, the decoding error of the 4D light field in the angular direction will cause the edge information loss of the integrated refocused image, which will reduce the accuracy of the all-in-focus image fusion. In this paper, a light field all-in-focus image fusion algorithm based on edge-enhanced guided filtering is proposed. Through multi-scale decomposition of the digital refocused images and guided filtering optimization of the feature layer decision map, the final all-in-focus image is obtained. Compared with the traditional fusion algorithm, the edge information loss caused by the 4D light field calibration error is compensated in the presented method. In the step of multi-scale decomposition of the refocused image, the edge layer extraction is added to accomplish the high-frequency information enhancement. Then the multi-scale evaluation model is established to optimize the edge layer’s guided filtering parameters to obtain a better light field all-in-focus image. The experimental results show that the edge intensity and the perceptual sharpness of the all-in-focus image can be improved without significantly reducing the similarity between the all-in-focus image and the original image.
  • loading
  • LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191–207. doi: 10.1016/j.inffus.2016.12.001
    WU Gaochang, MASIA B, JARABO A, et al. Light field image processing: An overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7): 926–954. doi: 10.1109/JSTSP.2017.2747126
    GOSHTASBY A A and NIKOLOV S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114–118. doi: 10.1016/j.inffus.2006.04.001
    刘帆, 裴晓鹏, 张静, 等. 基于优化字典学习的遥感图像融合方法[J]. 电子与信息学报, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263

    LIU Fan, PEI Xiaopeng, ZHANG Jing, et al. Remote sensing image fusion based on optimized dictionary learning[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263
    谢颖贤, 武迎春, 王玉梅, 等. 基于小波域清晰度评价的光场全聚焦图像融合[J]. 北京航空航天大学学报, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739

    XIE Yingxian, WU Yingchun, WANG Yumei, et al. Light field all-in-focus image fusion based on wavelet domain sharpness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739
    肖斌, 唐翰, 徐韵秋, 等. 基于Hess矩阵的多聚焦图像融合方法[J]. 电子与信息学报, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497

    XIAO Bin, TANG Han, XU Yunqiu, et al. Multi-focus image fusion based on Hess matrix[J]. Journal of Electronics &Information Technology, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497
    ZHANG Yu, BAI Xiangzhi, and WANG Tao. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81–101. doi: 10.1016/j.inffus.2016.09.006
    SUN Jianguo, HAN Qilong, KOU Liang, et al. Multi-focus image fusion algorithm based on Laplacian pyramids[J]. Journal of the Optical Society of America A, 2018, 35(3): 480–490. doi: 10.1364/JOSAA.35.000480
    WAN Tao, ZHU Chenchen, and QIN Zengchang. Multifocus image fusion based on robust principal component analysis[J]. Pattern Recognition Letters, 2013, 34(9): 1001–1008. doi: 10.1016/j.patrec.2013.03.003
    LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139–155. doi: 10.1016/j.inffus.2014.05.004
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Multi-focus image fusion based on multi-scale focus measures and generalized random walk[C]. The 36th Chinese Control Conference, Dalian, China, 2017: 5464–5468. doi: 10.23919/ChiCC.2017.8028223.
    NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[R]. Stanford Tech Report CTSR 2005-02, 2005.
    SOTAK JR G E and BOYER K L. The laplacian-of-gaussian kernel: A formal analysis and design procedure for fast, accurate convolution and full-frame output[J]. Computer Vision, Graphics, and Image Processing, 1989, 48(2): 147–189. doi: 10.1016/s0734-189x(89)80036-2
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    YOON Y, JEON H G, YOO D, et al. Light-field image super-resolution using convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(6): 848–852. doi: 10.1109/LSP.2017.2669333
    SCHMIDT M, LE ROUX N, and BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2): 83–112. doi: 10.1007/s10107-016-1030-6
    LIU Zheng, BLASCH E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94–109. doi: 10.1109/tpami.2011.109
    JUNEJA M and SANDHU P S. Performance evaluation of edge detection techniques for images in spatial domain[J]. International Journal of Computer Theory and Engineering, 2009, 1(5): 614–621. doi: 10.7763/IJCTE.2009.V1.100
    HAGHIGHAT M and RAZIAN M A. Fast-FMI: Non-reference image fusion metric[C]. The 8th IEEE International Conference on Application of Information and Communication Technologies, Astana, Kazakhstan, 2014: 1–3. doi: 10.1109/ICAICT.2014.7036000.
    FEICHTENHOFER C, FASSOLD H, and SCHALLAUER P. A perceptual image sharpness metric based on local edge gradient analysis[J]. IEEE Signal Processing Letters, 2013, 20(4): 379–382. doi: 10.1109/LSP.2013.2248711
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1626) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return