Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Yong CHEN, Kaixin ZHU, Hao FANG, Huanlin LIU. No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
Citation: Yong CHEN, Kaixin ZHU, Hao FANG, Huanlin LIU. No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721

No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding

doi: 10.11999/JEIT190721
Funds:  The National Natural Science Foundation of China (51977021)
  • Received Date: 2019-09-17
  • Rev Recd Date: 2020-02-16
  • Available Online: 2020-03-09
  • Publish Date: 2020-10-13
  • Considering the problem that it is difficult to accurately and effectively extract the quality features of mixed distortion image, an image quality assessment method based on spatial distribution analysis is proposed. Firstly, the brightness coefficients of the image are normalized, and the image is divided into blocks. While the Convolutional Neural Network (CNN) is used for end-to-end depth learning, the multi-level stacking of convolution cores is applied to acquire image quality perception features. The feature is mapped to the mass fraction of the image block through the full connection layer, then the quality pool is obtained by aggregating the quality of the block. Through the analysis of the spatial distribution of local quality in the quality pool, the features that can represent its spatial distribution are extracted, and then the mapping model from local quality to overall quality is established by the neural network to aggregate the local quality of the image. Finally, the effectiveness of the algorithm is verified by the performance tests in MLIVE, MDID2013 and MDID2016 mixed distortion image databases.
  • loading
  • GU Ke, TAO Dacheng, QIAO Junfei, et al. Learning a no-reference quality assessment model of enhanced images with big data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1301–1313. doi: 10.1109/TNNLS.2017.2649101
    FREITAS P G, AKAMINE W Y L, and FARIAS M C Q. No-Reference image quality assessment using orthogonal color planes patterns[J]. IEEE Transactions on Multimedia, 2018, 20(12): 3353–3360. doi: 10.1109/TMM.2018.2839529
    张敏辉, 杨剑. 评价SAR图像去噪效果的无参考图像质量指标[J]. 重庆邮电大学学报: 自然科学版, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014

    ZHANG Minhui and YANG Jian. A new referenceless image quality index to evaluate denoising performance of SAR images[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014
    徐弦秋, 刘宏清, 黎勇, 等. 基于RGB通道下模糊核估计的图像去模糊[J]. 重庆邮电大学学报: 自然科学版, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009

    XU Xianqiu, LIU Hongqing, LI Yong, et al. Image deblurring with blur kernel estimation in RGB channels[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050
    GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Using free energy principle for blind image quality assessment[J]. IEEE Transactions on Multimedia, 2015, 17(1): 50–63. doi: 10.1109/TMM.2014.2373812
    LI Qiaohong, LIN Weisi, and FANG Yuming. No-reference quality assessment for multiply-distorted images in gradient domain[J]. IEEE Signal Processing Letters, 2016, 23(4): 541–545. doi: 10.1109/LSP.2016.2537321
    DAI Tao, GU Ke, NIU Li, et al. Referenceless quality metric of multiply-distorted images based on structural degradation[J]. Neurocomputing, 2018, 290: 185–195. doi: 10.1016/j.neucom.2018.02.050
    JIA Sen and ZHANG Yang. Saliency-based deep convolutional neural network for no-reference image quality assessment[J]. Multimedia Tools and Applications, 2018, 77(12): 14859–14872. doi: 10.1007/s11042-017-5070-6
    ZHOU Wujie, YU Lu, QIAN Yaguan, et al. Deep blind quality evaluator for multiply distorted images based on monogenic binary coding[J]. Journal of Visual Communication and Image Representation, 2019, 60: 305–311. doi: 10.1016/j.jvcir.2019.03.001
    YE Peng, KUMAR J, KANG Le, et al. Unsupervised feature learning framework for no-reference image quality assessment[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1098–1105. doi: 10.1109/CVPR.2012.6247789.
    BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2559–2566. doi: 10.1109/CVPR.2010.5539963.
    孙娅楠, 林文斌. 梯度下降法在机器学习中的应用[J]. 苏州科技大学学报: 自然科学版, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006

    SUN Yanan and LIN Wenbin. Application of gradient descent method in machine learning[J]. Journal of Suzhou University of Science and Technology:Natural Science, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006
    JAYARAMAN D, MITTAL A, MOORTHY A K, et al. Objective quality assessment of multiply distorted images[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 1693–1697. doi: 10.1109/ACSSC.2012.6489321.
    GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Hybrid no-reference quality metric for singly and multiply distorted images[J]. IEEE Transactions on Broadcasting, 2014, 60(3): 555–567. doi: 10.1109/TBC.2014.2344471
    SUN Wen, ZHOU Fei, and LIAO Qingmin. MDID: A multiply distorted image database for image quality assessment[J]. Pattern Recognition, 2017, 61: 153–168. doi: 10.1016/j.patcog.2016.07.033
    ZHANG Min, MURAMATSU C, ZHOU Xiangrong, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207–210. doi: 10.1109/LSP.2014.2326399
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378
    MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
    LI Qiaohong, LIN Weisi, XU Jingtao, et al. Blind image quality assessment using statistical structural and luminance features[J]. IEEE Transactions on Multimedia, 2016, 18(12): 2457–2469. doi: 10.1109/TMM.2016.2601028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (2891) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return