Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Li KE, Danni WANG, Qiang DU, Chudi JIANG. Arrhythmia Classification Based on Convolutional Long Short Term Memory Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
Citation: Li KE, Danni WANG, Qiang DU, Chudi JIANG. Arrhythmia Classification Based on Convolutional Long Short Term Memory Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712

Arrhythmia Classification Based on Convolutional Long Short Term Memory Network

doi: 10.11999/JEIT190712
Funds:  The National Natural Science Foundation of China (51377109), The Natural Science Foundation of Liaoning Province (2019-ZD-0204)
  • Received Date: 2019-09-16
  • Rev Recd Date: 2020-02-20
  • Available Online: 2020-03-23
  • Publish Date: 2020-08-18
  • Chronic cardiovascular diseases such as arrhythmia seriously affect human health. The automatic classification of ElectroCardioGram(ECG) signals can effectively improve the diagnostic efficiency of such diseases and reduce labor costs. To tackle this problem, an improved Long-Short Term Memory (LSTM) method is proposed to achieve automatic classification of one dimensional ECG signals. Firstly, deep Convolutional Neural Network (CNN) is designed to deeply encode the ECG signal, and ECG signal morphological features are extracted. Secondly, the LSTM classification network is used to realize automatic classification of arrhythmia of ECG signal features. Experimental studies based on the MIT-BIH arrhythmia database show that the training duration is significantly shortened and more than 99.2% classification accuracy is obtained. Sensitivity and other evaluation parameters are improved to meet the real-time and efficient requirements for automatic classification of ECG signals.

  • loading
  • World Health Organization. Cardiovascular diseases[EB/OL]. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1, 2017.
    YE Can, KUMAR B V K V, and COIMBRA M T. Heartbeat classification using morphological and dynamic features of ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2930–2941. doi: 10.1109/tbme.2012.2213253
    YILDIRIM Ö. ECG beat detection and classification system using wavelet transform and online sequential ELM[J]. Journal of Mechanics in Medicine and Biology, 2019, 19(1): 1940008. doi: 10.1142/S0219519419400086
    高兴姣, 李智, 陈珊珊, 等. 基于近邻保持嵌入算法的心律失常心拍分类[J]. 生物医学工程学杂志, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045

    GAO Xingjiao, LI Zhi, CHEN Shanshan, et al. Arrhythmia heartbeats classification based on neighborhood preserving embedding algorithm[J]. Journal of Biomedical Engineering, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045
    AHMED R and ARAFAT S. Cardiac arrhythmia classification using hierarchical classification model[C]. The 6th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 2014: 203–207. doi: 10.1109/CSIT.2014.6806001.
    BALOUCHESTANI M, SUGAVANESWARAN L, and KRISHNAN S. Advanced K-means clustering algorithm for large ECG data sets based on K-SVD approach[C]. The 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 2014: 177–182. doi: 10.1109/CSNDSP.2014.6923820.
    LI Duan, ZHANG Hongxin, and ZHANG Mingming. Wavelet de-noising and genetic algorithm-based least squares twin SVM for classification of arrhythmias[J]. Circuits, Systems, and Signal Processing, 2017, 36(7): 2828–2846. doi: 10.1007/s00034-016-0439-8
    YIN Xi and LIU Xiaoming. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 2018, 27(2): 964–975. doi: 10.1109/TIP.2017.2765830
    王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900

    WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900
    MENG Huanhuan and ZHANG Yue. Classification of electrocardiogram signals with deep belief networks[C]. The 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 7–12. doi: 10.1109/CSE.2014.36.
    ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89: 389–396. doi: 10.1016/j.compbiomed.2017.08.022
    ZHAI Xiaolong and TIN C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network[J]. IEEE Access, 2018, 6: 27465–27472. doi: 10.1109/ACCESS.2018.2833841
    CHENG Maowei, SORI W J, JIANG Feng, et al. Recurrent neural network based classification of ecg signal features for obstruction of sleep apnea detection[C]. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017, 199–202. doi: 10.1109/CSE-EUC.2017.220.
    TAN J H, HAGIWARA Y, PANG W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals[J]. Computers in Biology and Medicine, 2018, 94: 19–26. doi: 10.1016/j.compbiomed.2017.12.023
    吴志勇, 丁香乾, 许晓伟, 等. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417

    WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417
    HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65–69. doi: 10.1038/s41591-018-0268-3
    PARK J, LEE K, and KANG K. Arrhythmia detection from heartbeat using k-nearest neighbor classifier[C]. 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 2013: 15–22. doi: 10.1109/BIBM.2013.6732594.
    ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016, 127: 52–63. doi: 10.1016/j.cmpb.2015.12.024
    GÜLER I and ÜBEYLI E D. ECG beat classifier designed by combined neural network model[J]. Pattern Recognition, 2005, 38(2): 199–208. doi: 10.1016/j.patcog.2004.06.009
    SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (5193) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return