Citation: | Peng XIE, Li XU, Junhui YIN, Zhonghai YANG, Bin LI. Application of Finite Element-Based Domain Decomposition Method to the Simulation for Permanent Magnet Focusing System[J]. Journal of Electronics & Information Technology, 2021, 43(2): 488-494. doi: 10.11999/JEIT190706 |
With the development of computer technology and parallel solving technology, domain decomposition method has been increasingly applied to various fields of computational electromagnetics. For the simulation of microwave tube permanent magnet focusing system, this paper proposes a finite element-based non-overlapping domain decomposition method, and introduces a novel transmission condition. Then the interior penalty formulation is used to derive the finite element weak form. The biggest advantage of the proposed domain decomposition method is that no extra unknowns are introduced, and the final finite element matrix is symmetric and positive definite, which makes the matrix equation suitable be solved by the preconditioned conjugate gradient method. In this paper, several microwave tube permanent magnet focusing systems are simulated and compared with the commercial software Maxwell in detail. The results show that the proposed domain decomposition method has the same accuracy as Maxwell, but has a more superior computational performance.
PARKER R K, ABRAMS R H, DANLY B G, et al. Vacuum electronics[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 835–845. doi: 10.1109/22.989967
|
SRIKRISHNA P, CHANAKYA T, VENKATESWARAN R, et al. Thermal analysis of high-average power helix traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2218–2226. doi: 10.1109/TED.2017.2786941
|
LIU Gaofeng, XUE Qianzhong, ZHANG Shan, et al. Development and demonstration of a Ka-band gyrotron traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1975–1983. doi: 10.1109/TPS.2018.2835843
|
CHEN Wenlong, HU Quan, HU Yulu, et al. Magnetic focusing simulator: A 3-D finite-element permanent-magnet focusing system design tool[J]. IEEE Transactions on Electron Devices, 2015, 62(4): 1319–1326. doi: 10.1109/TED.2015.2400993
|
YANG Wenying, PENG Fei, DINAVAHI V, et al. A generalized parallel transmission line iteration for finite element analysis of permanent magnet axisymmetrical actuator[J]. IEEE Transactions on Magnetics, 2019, 55(3): 7400410. doi: 10.1109/TMAG.2018.2885966
|
FU Dongshan, XU Yanliang, GILLON F, et al. Presentation of a novel transverse-flux permanent magnet linear motor and its magnetic field analysis based on Schwarz-Christoffel mapping method[J]. IEEE Transactions on Magnetics, 2018, 54(3): 6000204. doi: 10.1109/TMAG.2017.2756847
|
ANSYS. Maxwell 3D electromagnetic field solver[EB/OL]. https://www.ansys.com/products/electronics/ansys-maxwell, 2019.
|
LI Bin, YANG Zhonghai, LI Jianqing, et al. Theory and design of microwave-tube simulator suite[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 919–927. doi: 10.1109/TED.2009.2015413
|
LU Jiaqing, CHEN Yongpin, LI Dongwei, et al. An embedded domain decomposition method for electromagnetic modeling and design[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 309–323. doi: 10.1109/TAP.2018.2874751
|
BELGACEM F B. The mortar finite element method with Lagrange multipliers[J]. Numerische Mathematik, 1999, 84(2): 173–197. doi: 10.1007/s002110050468
|
KÖPPEL M, MARTIN V, and ROBERTS J E. A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures[J]. GEM-International Journal on Geomathematics, 2019, 10(1): 7. doi: 10.1007/s13137-019-0117-7
|
SHAO Yang, PENG Zhen, and LEE J F. Thermal-aware DC IR-drop co-analysis using non-conformal domain decomposition methods[J]. Proceedings of the Royal Society A, 2012, 468(2142): 1652–1675. doi: 10.1098/rspa.2011.0708
|
RAWAT V. Finite element domain decomposition with second order transmission conditions for time-harmonic electromagnetic problems[D]. [Ph. D. dissertation], The Ohio State University, 2009: 11–19.
|
MATSUO T, OHTSUKI Y, and SHIMASAKI M. Efficient linear solvers for mortar finite-element method[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1469–1472. doi: 10.1109/TMAG.2007.891415
|
LIONS P L. On the Schwarz alternating method III: A variant for nonoverlapping subdomains[C]. The 3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia, USA, 1990: 202–223.
|
BLANDFORD G E and TAUCHERT T R. Thermoelastic analysis of layered structures with imperfect layer contact[J]. Computers & Structures, 1985, 21(6): 1283–1291. doi: 10.1016/0045-7949(85)90182-8
|
SAVIJA I, CULHAM J R, YOVANOVICH M M, et al. Review of thermal conductance models for joints incorporating enhancement materials[J]. Journal of Thermophysics and Heat Transfer, 2003, 17(1): 43–52. doi: 10.2514/2.6732
|
WEBB J P and FORGAHANI B. Hierarchal scalar and vector tetrahedra[J]. IEEE Transactions on Magnetics, 1993, 29(2): 1495–1498. doi: 10.1109/20.250686
|
YIN Junhui, XU Li, WANG Hao, et al. Accurate and fast three-dimensional free vibration analysis of large complex structures using the finite element method[J]. Computers & Structures, 2019, 221: 142–156. doi: 10.1016/j.compstruc.2019.06.002
|
KARYPIS G. A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices[EB/OL]. http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf, 2013.
|