Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Xiaolei HUO, Hongzhi ZHAO, Ying LIU, Xiaohui LI, Xin WANG, Youxi TANG. Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2437-2444. doi: 10.11999/JEIT190704
Citation: Xiaolei HUO, Hongzhi ZHAO, Ying LIU, Xiaohui LI, Xin WANG, Youxi TANG. Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2437-2444. doi: 10.11999/JEIT190704

Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component

doi: 10.11999/JEIT190704
Funds:  The National Natural Science Foundation of China (61771107, 61701075, 61601064, 61531009), The National Key R&D Program of China (2018YFB1801903), Sichuan Science and Technology Program (2019JDRC0006)
  • Received Date: 2019-09-10
  • Rev Recd Date: 2020-02-28
  • Available Online: 2020-04-07
  • Publish Date: 2020-10-13
  • In Adjacent Channel Interference (ACI) suppression, in order to obtain the nonlinear characteristics of interference signal for reconstruction and cancellation, the receiver needs to use high-sampling-rate wideband Analog-to-Digital Converter (ADC) to sample interference signal, which will greatly increase the cost of the receiver. To solve the problem, a ACI suppression method based on deconvolution of interference signal’s out-of-band component is proposed in this paper. By using the known out-of-band nonlinear component, the influence between adjacent frames is calculated and eliminated, and then the narrow band linear convolution frame is constructed from the partial convolution frame. Finally, the original wide band signal is recovered by regularized least square method, thus reducing the ADC sampling rate. The simulation results show that when the sampling rate is only 1/3 of the traditional scheme, the residual interference brought by the proposed method is not higher than the noise floor of 6 dB.
  • loading
  • ZHOU Ping, LU Yinghua, TAO Yong, et al. Simulation analysis on co-site interference of vehicular digital communication system based on IM prediction method by BER[J]. The Journal of China Universities of Posts and Telecommunications, 2016, 23(1): 31–41. doi: 10.1016/S1005-8885(16)60005-5
    HAN Ting, HAN Bingjun, ZHANG Lin, et al. Coexistence study for wifi and zigbee under smart home scenarios[C]. IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 2012: 669-674. doi: 10.1109/ICNIDC.2012.6418840.
    IEEE. IEEE 802.11-2007 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. IEEE, 2007.
    NIKITIN A V, DAVIDCHACK R L, and SMITH J E. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 12. doi: 10.1186/s13634-015-0202-5
    刘建成, 全厚德, 孙慧贤, 等. 近距离无线电台邻道干扰的功率谱解析[J]. 电讯技术, 2017, 57(3): 306–310. doi: 10.3969/j.issn.1001-893x.2017.03.010

    LIU Jiancheng, QUAN Houde, SUN Huixian, et al. Power spectrum resolution of adjacent channel interference for collocated wireless radios[J]. Telecommunication Engineering, 2017, 57(3): 306–310. doi: 10.3969/j.issn.1001-893x.2017.03.010
    武南开, 苏东林, 何洪涛, 等. 机载超短波电台邻道干扰减敏特性建模与评估[J]. 北京航空航天大学学报, 2017, 43(3): 481–487. doi: 10.13700/j.bh.1001-5965.2016.0230

    WU Nankai, SU Donglin, HE Hongtao, et al. Adjacent channel interference modeling and assessment on reduction of airborne VHF radio sensitivity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 481–487. doi: 10.13700/j.bh.1001-5965.2016.0230
    XUE Zhen, WANG Jinlong, SHI Qingjiang, et al. Time-frequency scheduling and power optimization for reliable multiple UAV communications[J]. IEEE Access, 2018, 6: 3992–4005. doi: 10.1109/ACCESS.2018.2790933
    霍晓磊, 赵宏志, 刘颖, 等. 基于抵消技术的邻道干扰抑制[J]. 系统工程与电子技术, 2019, 41(11): 2611–2618.

    HUO Xiaolei, ZHAO Hongzhi, LIU Ying, et al. Adjacent channel interference suppression based on cancellation technology[J]. Systems Engineering and Electronics, 2019, 41(11): 2611–2618.
    ROBLIN P, QUINDROIT C, NARAHARISETTI N, et al. Concurrent linearization: The state of the art for modeling and linearization of multiband power amplifiers[J]. IEEE Microwave Magazine, 2013, 14(7): 75–91. doi: 10.1109/MMM.2013.2281297
    LIU Ying, HUANG Chuang, QUAN Xin, et al. Novel linearization architecture with limited ADC dynamic range for green power amplifiers[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3902–3914. doi: 10.1109/JSAC.2016.2600415
    LIU Ying, PAN Wensheng, SHAO Shihai, et al. A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(12): 683–685. doi: 10.1109/LMWC.2013.2284786
    MA Yuelin, YAMAO Y, AKAIWA Y, et al. Wideband digital predistortion using spectral extrapolation of band-limited feedback signal[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(7): 2088–2097. doi: 10.1109/TCSI.2013.2295897
    PAN Wensheng, LIU Ying, SHAO Shihai, et al. A method to reduce sampling rate of the ADC in feedback channel for wideband digital predistortion[J]. Circuits, Systems, and Signal Processing, 2014, 33(8): 2655–2665. doi: 10.1007/s00034-014-9751-3
    LIU Ying, PAN Wensheng, SHAO Shihai, et al. A general digital predistortion architecture using constrained feedback bandwidth for wideband power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1544–1555. doi: 10.1109/TMTT.2015.2416184
    YU Xin. Digital predistortion using feedback signal with incomplete spectral information[C]. 2012 Asia Pacific Microwave Conference, Kaohsiung, China, 2012: 950–952. doi: 10.1109/APMC.2012.6421788.
    邹谋炎. 反卷积和信号复原[M]. 北京: 国防工业出版社, 2001: 10-160.

    ZOU Mouyan. Deconvolution and Signal Recovery[M]. Beijing: National Defense Industry Press, 2001: 10-160.
    HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4): 561–580. doi: 10.1137/1034115
    GOLUB G H, HEATH M, and WAHBA H G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215–223. doi: 10.1080/00401706.1979.10489751
    HANSEN P C. REGULARIZATION TOOLS: A matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical Algorithms, 1994, 6(1): 1–35. doi: 10.1007/BF02149761
    DING Lei, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 52(1): 159–165. doi: 10.1109/TCOMM.2003.822188
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (3491) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return