Citation: | Xiaoyu CHEN, Heru SU, Xichao GAO. Construction of Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2021, 43(2): 461-466. doi: 10.11999/JEIT190703 |
The construction of ZCZ Aperiodic Complementary Sequence (ZACS) sets are researched based on orthogonal matrices. The proposed approach can provide optimal ZACS sets and the length of ZCZ can be chosen flexibly under the condition of Z|N. The resultant sequence sets have ideal autocorrelation properties and intra-group complementary properties. By adjusting the parameter q, different ZACS sets can be obtained. Moreover, based on the multilevel perfect sequence over integer, Gaussian integer orthogonal matrix is constructed which can be used as the initial sequence in the construction of ZACS. The sequence sets can be applied to Multi-Carrier Code Division Multiple Access (MC-CDMA) system to remove multipath interference and multiple access interference. Furthermore, it can be used as training sequence in Multiple Input Multiple Output (MIMO) channel estimation.
CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124
|
LIU Zilong, GUAN Yongliang, and PARAMPALLI U. New complete complementary codes for peak-to-mean power control in multi-carrier CDMA[J]. IEEE Transactions on Communications, 2014, 62(3): 1105–1113. doi: 10.1109/TCOMM.2013.122013.130148
|
VELAZQUEZ-GUTIERREZ J M and VARGAS-ROSALES C. Sequence sets in wireless communication systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1225–1248. doi: 10.1109/COMST.2016.2639739
|
KE Pinhui and ZHOU Zhengchun. A generic construction of Z-periodic complementary Sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512
|
CHEN Chaoyu. A novel construction of Z-complementary pairs based on generalized Boolean functions[J]. IEEE Signal Processing Letters, 2017, 24(7): 987–990. doi: 10.1109/LSP.2017.2701834
|
岳红翠, 高军萍, 李琦. 新的零相关区周期互补序列集的构造方法[J]. 信息与控制, 2018, 47(6): 650–655. doi: 10.13976/j.cnki.xk.2018.7441
YUE Hongcui, GAO Junping, and LI Qi. New construction method for periodic complementary sequence sets with zero correlation zone[J]. Information and Control, 2018, 47(6): 650–655. doi: 10.13976/j.cnki.xk.2018.7441
|
刘涛, 许成谦, 李玉博. 基于差族构造高斯整数周期互补序列[J]. 电子与信息学报, 2019, 14(5): 1167–1172. doi: 10.11999/JEIT180646
LIU Tao, XU Chengqian, and LI Yubo. Constructions of Gaussian integer periodic complementary sequences based on difference families[J]. Journal of Electronics &Information Technology, 2019, 14(5): 1167–1172. doi: 10.11999/JEIT180646
|
LI Yubo, SUN Jiaan, XU Chengqian, et al. Constructions of optimal zero correlation zone aperiodic complementary sequence sets[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(3): 908–912. doi: 10.1587/transfun.E100.A.908
|
LI Yubo and XU Chengqian. ZCZ aperiodic complementary sequence sets with low column sequence PMEPR[J]. IEEE Communications Letters, 2015, 19(8): 1303–1306. doi: 10.1109/LCOMM.2015.2446473
|
LI Jing, HUANG Aiping, GUIZANI M, et al. Inter-group complementary codes for interference-resistant CDMA wireless communications[J]. IEEE Transactions on Wireless Communications, 2008, 7(1): 166–174. doi: 10.1109/TWC.2008.060414
|
SARKAR P, MAJHI S, VETTIKALLADI H, et al. A direct construction of inter-group complementary code set[J]. IEEE Access, 2018, 6: 42047–42056. doi: 10.1109/ACCESS.2018.2856878
|
张振宇, 曾凡鑫, 宣贵新, 等. MC-CDMA系统中具有组内互补特性的序列构造[J]. 通信学报, 2011, 32(3): 27–32, 39. doi: 10.3969/j.issn.1000-436X.2011.03.004
ZHANG Zhenyu, ZENG Fanxin, XUAN Guixin, et al. Design of sequences with intra-group complementary properties for MC-CDMA systems[J]. Journal on Communications, 2011, 32(3): 27–32, 39. doi: 10.3969/j.issn.1000-436X.2011.03.004
|
LI Xudong, FAN Pingzhi, TANG Xiaohu, et al. Quadriphase z-complementary sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93. A(11): 2251–2257. doi: 10.1587/transfun.E93.A.2251
|
ZENG Fanxin, ZENG Xiaoping, ZHANG Zhenyu, et al. New construction method for quaternary aperiodic, periodic, and Z-complementary sequence sets[J]. Journal of Communications and Networks, 2012, 14(13): 230–236. doi: 10.1109/JCN.2012.6253082
|
LIU Kai, TIAN Huandan, and LI Yubo. Aperiodic complementary sequence sets with zero correlation zone over 8-QAM+ constellation[C]. The 6th International Conference on Electronics Information and Emergency Communication, Beijing, China, 2016: 198–201. doi: 10.1109/ICEIEC.2016.7589719.
|