Citation: | Jinming CHEN, Tong WANG, Jianxin WU, Xiaoyu LIU. Airborne Distributed Coherent Aperture Radar Synchronization Error Calibration Method Based on Prominent Points[J]. Journal of Electronics & Information Technology, 2021, 43(2): 356-363. doi: 10.11999/JEIT190694 |
Airborne Distributed Coherent Aperture Radar (DCAR) has the advantages of wide observation range, high maneuverability and flexible deployment. However, airborne DCAR is confronted with more stringent time, space and phase synchronization requirements. Therefore, an airborne DCAR signal model and its matrix representation based on Slow-Time Code Division Multiple Access (ST-CDMA) waveform are established successively. Moreover, the influence on target coherence synthesis resulted from time, space and phase synchronization errors is analyzed in detail, and a novel airborne DCAR synchronization error calibration method based on prominent points is proposed. This method utilizes the target parameter search strategy to eliminate the grid mismatch filtering firstly. Then, with the utilization of estimation approaches based on target model or repeater station model, the unit platform position error is calibrated. Finally, equivalent amplitude and phase errors are calibrated by Eigen structure methods. The validity of the proposed method to calibrate the airborne DCAR synchronization error is demonstrated by simulation experiments.
AHLGREN G W. Next generation radar concept definition team final report[R]. 2003.
|
KEVIN M, SCOTT D, JEFFREY C, et al. Wideband aperture coherence processing for next generation radar(NexGen)[R]. Tehnical Report ESC-TR200087, 2004.
|
FLETCHER A S and ROBEY F C. Performance bounds for adaptive coherence of sparse array radar[C]. The 11th Conference Adaptive Sensors Array Processing, Lexington, USA, 2003: 290–293.
|
ZENG Tao, YIN Pilei, and LIU Quanhua. Wideband distributed coherent aperture radar based on stepped frequency signal: Theory and experimental results[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 672–688. doi: 10.1049/iet-rsn.2015.0221
|
LIU Xinghua, XU Zhenhai, and XIAO Shunping. Performance gain bounds of coherently combining multiple radars in a target-based calibration manner[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 278–287. doi: 10.21629/JSEE.2019.02.07
|
宋靖, 张剑云. 分布式全相参雷达相参性能分析[J]. 电子与信息学报, 2015, 37(1): 9–14. doi: 10.11999/JEIT140202
SONG Jing and ZHANG Jianyun. Coherence performance analysis for distributed aperture coherent radar[J]. Journal of Electronics &Information Technology, 2015, 37(1): 9–14. doi: 10.11999/JEIT140202
|
王俊, 向洪, 魏少明, 等. 快拍数据的分布式二维阵列测角方法研究[J]. 电子与信息学报, 2018, 40(6): 1375–1382. doi: 10.11999/JEIT170856
WANG Jun, XIANG Hong, WEI Shaoming, et al. 2-D DOA estimation of distributed array with single snapshot[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1375–1382. doi: 10.11999/JEIT170856
|
刘兴华, 徐振海, 肖顺平. 分布式相参雷达几何布置约束条件[J]. 系统工程与电子技术, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09
LIU Xinghua, XU Zhenhai, and XIAO Shunping. Geometric arrangement constraints of distributed coherent aperture radar[J]. Systems Engineering and Electronics, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09
|
陆潞, 高梅国. 分布式阵列雷达基线位置和相位误差的卫星标校方法[J]. 电子与信息学报, 2019, 41(12): 2896–2902. doi: 10.11999/JEIT181152
LU Lu and GAO Meiguo. A satellite calibration method for the baseline coordinate and phase difference of distributed radar array[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2896–2902. doi: 10.11999/JEIT181152
|
陈金铭, 王彤, 吴建新, 等. 基于滤波器网格失配的分布式相参雷达目标参数估计方法[J]. 系统工程与电子技术, 2019, 41(11): 2460–2470. doi: 10.3969/j.issn.1001-506X.2019.11.09
CHEN Jinming, WANG Tong, WU Jianxin, et al. Target parameter estimation method for distributed coherent aperture radar based on grid mismatch filtering[J]. Systems Engineering and Electronics, 2019, 41(11): 2460–2470. doi: 10.3969/j.issn.1001-506X.2019.11.09
|
YANG Xiaopeng, YIN Pilei, and ZENG Tao. Time and phase synchronization for wideband distributed coherent aperture radar[C]. IET International Radar Conference 2013, Xi’an, China, 2013: 1–5. doi: 10.1049/cp.2013.0241.
|
CHATTERJEE P and NANZER J A. Effects of time alignment errors in coherent distributed radar[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 727–731. doi: 10.1109/RADAR.2018.8378649.
|
GINI F, DE MAIO A, and PATTON L. Waveform Design and Diversity for Advanced Radar Systems[M]. London: The Institution of Engineering and Technology, 2012: 89–117.
|
RABIDEAU D J. MIMO radar waveforms and cancellation ratio[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1167–1178. doi: 10.1109/TAES.2012.6178055.
|
WEISS A J and FRIEDLANDER B. Eigenstructure methods for direction finding with sensor gain and phase uncertainties[J]. Circuits, Systems and Signal Processing, 1990, 9(3): 271–300. doi: 10.1007/BF01201215
|