Citation: | Tianyuan XIE, Haoyu LI, Yiming ZHU, Yanbin PAN, Zhen LIU, Zhaomin YANG. FatSeal: An Efficient Lattice-based Signature Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 333-340. doi: 10.11999/JEIT190678 |
GOLDREICH O, GOLDWASSER S, and HALEVI S. Public-key cryptosystems from lattice reduction problems[C]. The 17th Annual International Cryptology Conference, Santa Barbara, USA, 1997: 112–131. doi: 10.1007/BFb0052231.
|
BABAI L. On Lovász’ lattice reduction and the nearest lattice point problem[J]. Combinatorica, 1986, 6(1): 1–13. doi: 10.1007/BF02579403
|
HOFFSTEIN J, PIPHER J, and SILVERMAN J H. NSS: An NTRU lattice-based signature scheme[C]. International Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, 2001: 211–228. doi: 10.1007/3-540-44987-6.
|
NGUYEN P Q and REGEV O. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures[C]. The 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, 2006: 271–288. doi: 10.1007/11761679_17.
|
GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. The 40th Annual ACM Symposium on Theory of Computing, Victoria, 2008: 197–206. doi: 10.1145/1374376.1374407.
|
FOUQUE P A, HOFFSTEIN J, KIRCHNER P, et al. Fast-fourier lattice-based compact signatures over NTRU[EB/OL]. https://falcon-sign.info/, 2019.
|
LYUBASHEVSKY V. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures[C]. The 15th International Conference on the Theory and Application of Cryptology and Information Security, Tokyo, 2009: 598–616. doi: 10.1007/978-3-642-10366-7_35.
|
LYUBASHEVSKY V. Lattice signatures without trapdoors[C]. The 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, 2012: 738–755. doi: 10.1007/978-3-642-29011-4_43.
|
DUCAS L, DURMUS A, LEPOINT T, et al. Lattice signatures and bimodal gaussians[C]. The 33rd Annual Cryptology Conference, Santa Barbara, 2013: 40–56. doi: 10.1007/978-3-642-40041-4_3.
|
AVANZI R, BOS J, DUCAS L, et al. Cryptographic suite for algebraic lattices[EB/OL]. https://pq-crystals.org/, 2019.
|
DUCAS L, LYUBASHEVSKY V, and PREST T. Efficient identity-based encryption over NTRU lattices[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, 2014: 22–41. doi: 10.1007/978-3-662-45608-8_2.
|
BRUINDERINK L G, HÜLSING A, LANGE T, et al. Flush, gauss, and reload - a cache attack on the BLISS lattice-based signature scheme[C]. The 18th International Conference on Cryptographic Hardware and Embedded Systems, Santa Barbara, 2016: 323–345. doi: 10.1007/978-3-662-53140-2_16.
|
ESPITAU T, FOUQUE P, GÉRARD B, et al. Side-channel attacks on bliss lattice-based signatures: Exploiting branch tracing against strongswan and electromagnetic emanations in microcontrollers[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, 2017: 1857–1874. doi: 10.1145/3133956.3134028.
|
PESSL P, BRUINDERINK L G, and YAROM Y. To BLISS-B or not to be: Attacking strongSwan’s implementation of post-quantum signatures[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, 2017: 1843–1855. doi: 10.1145/3133956.3134023.
|
GÜNEYSU T, LYUBASHEVSKY V, and PÖPPELMANN T. Practical lattice-based cryptography: A signature scheme for embedded systems[C]. The 14th International Workshop on Cryptographic Hardware and Embedded Systems, Leuven, 2012: 530–547. doi: 10.1007/978-3-642-33027-8_31.
|
BAI Shi and GALBRAITH S D. An improved compression technique for signatures based on learning with errors[C]. Cryptographers’ Track at the RSA Conference, San Francisco, 2014: 28–47. doi: 10.1007/978-3-319-04852-9_2.
|
LENSTRA A K, LENSTRA H W Jr, and LOVÁSZ L. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261(4): 515–534. doi: 10.1007/BF01457454
|
SCHNORR C P and EUCHNER M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems[J]. Mathematical Programming, 1994, 66(1/3): 181–199. doi: 10.1007/BF01581144
|
LAARHOVEN T. Search problems in cryptography: From fingerprinting to lattice sieving[D]. [Ph.D. dissertation], Eindhoven University of Technology, 2015.
|
BECKER A, DUCAS L, GAMA N, et al. New directions in nearest neighbor searching with applications to lattice sieving[C]. The 27th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, 2016: 10–24. doi: 10.1137/1.9781611974331.
|
LAARHOVEN T, MOSCA M, and VAN DE POL J. Finding shortest lattice vectors faster using quantum search[J]. Designs, Codes and Cryptography, 2015, 77(2/3): 375–400. doi: 10.1007/s10623-015-0067-5
|
AKLEYLEK S, ALKIM E, BARRETO P S L M, et al. qTesla[EB/OL]. https://qtesla.Org, 2019.
|
HOWGRAVE-GRAHAM N. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU[C]. The 27th Annual International Cryptology Conference, Santa Barbara, 2007: 150–169. doi: 10.1007/978-3-540-74143-5_9.
|
ERDEM A, DUCAS L, PÖPPELMAN T, et al. Post-quantum key exchange-a new hope[C]. The 25th USENIX Security Symposium, Vancouver, 2016: 327–343.
|