Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Yujie WANG, Yu LI, Donghao JU, Haining HUANG. A Multi-target Passive Tracking Algorithm Based on Unmanned Underwater Vehicle[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2013-2020. doi: 10.11999/JEIT190675
Citation: Yujie WANG, Yu LI, Donghao JU, Haining HUANG. A Multi-target Passive Tracking Algorithm Based on Unmanned Underwater Vehicle[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2013-2020. doi: 10.11999/JEIT190675

A Multi-target Passive Tracking Algorithm Based on Unmanned Underwater Vehicle

doi: 10.11999/JEIT190675
Funds:  The National Key Research and Development Project (2018YFC14059), The National Natural Science Fundation of China (11904386)
  • Received Date: 2019-09-03
  • Rev Recd Date: 2020-04-07
  • Available Online: 2020-04-29
  • Publish Date: 2020-08-18
  • In the passive tracking using acoustic arrays, continuous and stable tracking of targets is important. In complex underwater environments, there are inevitably many trajectory interruptions, outliers, interference and target azimuth crossings in the bearing detection results, due to interference, noise, and arrays aperture limitations. In this paper, a multi-target passive tracking algorithm based on unmanned underwater vehicle is proposed. The particle sampling prediction method based on the motion information of the vehicle is used to perform the interruption prediction. The observation threshold setting method based on the motion information of the vehicle is used to adaptively set the tracking threshold. The block association tracking method is used for association of trajectory break and azimuth cross. The experimental results show that the proposed algorithm achieves correct multi-target tracking.

  • loading
  • NORTHARDT T and NARDONE S C. Track-before-detect bearings-only localization performance in complex passive sonar scenarios: A case study[J]. IEEE Journal of Oceanic Engineering, 2019, 44(2): 482–491. doi: 10.1109/JOE.2018.2811419
    BADRIASL L, ARULAMPALAM S, VAN DER HOEK J, et al. Bayesian WIV estimators for 3-D bearings-only TMA with speed constraints[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3576–3591. doi: 10.1109/TSP.2019.2917863
    DIAMANT R, KIPNIS D, BIGAL E, et al. An active acoustic track-before-detect approach for finding underwater mobile targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1): 104–119. doi: 10.1109/JSTSP.2019.2899237
    李子高, 李淑秋, 闻疏琳. 基于无人平台的水下目标自动检测方法[J]. 哈尔滨工程大学学报, 2017, 38(1): 103–108. doi: 10.11990/jheu.201601012

    LI Zigao, LI Shuqiu, and WEN Shulin. Automatic detection of an underwater target based on UUV[J]. Journal of Harbin Engineering University, 2017, 38(1): 103–108. doi: 10.11990/jheu.201601012
    金盛龙, 李宇, 黄海宁. 曲线机动情况下水下自主平台的改进被动合成孔径算法研究[J]. 电子与信息学报, 2018, 40(9): 2265–2272. doi: 10.11999/JEIT171225

    JIN Shenglong, LI Yu, and HUANG Haining. An improved passive synthetic aperture algorithm based on curvilinear maneuverability of autonomous underwater vehicles[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2265–2272. doi: 10.11999/JEIT171225
    NIAZI S and TOLOEI A. Estimation of LOS rates for target tracking problems using EKF and UKF algorithms-a comparative study[J]. International Journal of Engineering, Transactions B: Applications, 2015, 28(2): 172–179. doi: 10.5829/idosi.ije.2015.28.02b.02
    JULIER S J and UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401–422. doi: 10.1109/JPROC.2003.823141
    SADHU S, MONDAL S, SRINIVASAN M, et al. Sigma point Kalman filter for bearing only tracking[J]. Signal Processing, 2006, 86(12): 3769–3777. doi: 10.1016/j.sigpro.2006.03.006
    DOĞANÇAY K. On the bias of linear least squares algorithms for passive target localization[J]. Signal Processing, 2004, 84(3): 475–486. doi: 10.1016/j.sigpro.2003.12.002
    VAN DER MERWE R and WAN E A. The square-root unscented Kalman filter for state and parameter-estimation[C]. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, 2001: 3461–3464. doi: 10.1109/ICASSP.2001.940586.
    BREHARD T and LE CADRE J P. Hierarchical particle filter for bearings-only tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1567–1585. doi: 10.1109/TAES.2007.4441759
    YARDIM C, MICHALOPOULOU Z H, and GERSTOFT P. An overview of sequential Bayesian filtering in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 2011, 36(1): 71–89. doi: 10.1109/JOE.2010.2098810
    张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079

    ZHANG Ying and GAO Lingjun. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079
    XIONG Zhengda, XU Ke, CHEN Yong, et al. Research on multi-target bearings-only tracking method based on passive sonar systems[C]. The 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2017: 1326–1330. doi: 10.1109/IAEAC.2017.8054229.
    WANG Yujie, LI Yu, JU Donghao, et al. Continuous bearings-only tracking based on vehicle motion information correction[C]. OCEANS 2019-Marseille, Marseille, France, 2019: 1–5. doi: 10.1109/OCEANSE.2019.8867274.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (3208) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return