Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Yu WANG, Qi SU. Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State[J]. Journal of Electronics & Information Technology, 2020, 42(2): 307-314. doi: 10.11999/JEIT190661
Citation: Yu WANG, Qi SU. Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State[J]. Journal of Electronics & Information Technology, 2020, 42(2): 307-314. doi: 10.11999/JEIT190661

Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State

doi: 10.11999/JEIT190661
Funds:  The National Natural Science Foundation of China (61602045, 61602046), The National Key Research and Development Program of China (2016YFA0302600, 2018YFA0306404)
  • Received Date: 2019-08-30
  • Rev Recd Date: 2019-12-06
  • Available Online: 2019-12-20
  • Publish Date: 2020-02-19
  • Even attacks by quantum computer can be theoretically discovered if utilizing quantum communication protocols. Compared with entangled states, the Continuous Variable (CV) Gaussian coherent state is easier to be prepared. The schemes of quantum communication network based on coherent state will be more economical and practical. A Measurement-Device-Independent (MDI) Cluster state quantum communication network scheme by using coherent state is proposed. Quantum Secret Sharing (QSS) and Quantum Conference (QC) protocols can be implemented in this network. A linear Cluster state scheme is poposed to implement t-out-of-n QSS protocol, a star Cluster state scheme to implement four-user QSS protocol and QC protocol. The entanglement-based CV MDI scheme is used to analyze the relationship between the key rates and transmission distance for each symmetric and asymmetric protocol. The presented schemes provide a concrete reference for establishing CV MDI quantum QSS and QC protocol in quantum networks by using coherent state.
  • loading
  • BRAUNSTEIN S L and VAN LOOCK P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2): 513–577. doi: 10.1103/RevModPhys.77.513
    ZHANG Jing and BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73(3): 032318. doi: 10.1103/PhysRevA.73.032318
    YOKOYAMA S, UKAI R, ARMSTRONG S C, et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nature Photonics, 2013, 7(12): 982–986. doi: 10.1038/nphoton.2013.287
    BRIEGEL H J and RAUSSENDORF R. Persistent entanglement in arrays of interacting particles[J]. Physical Review Letters, 2001, 86(5): 910–913. doi: 10.1103/PhysRevLett.86.910
    WANG Yu and SU Qi. Implementing classical Hadamard transform algorithm by continuous variable cluster state[J]. Chinese Physics Letters, 2017, 34(7): 070302. doi: 10.1088/0256-307X/34/7/070302
    CLEVE R, GOTTESMAN D, and LO H K. How to share a quantum secret[J]. Physical Review Letters, 1999, 83(3): 648–651. doi: 10.1103/PhysRevLett.83.648
    ZHAO Yi, FUNG C H F, Qi Bing, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333. doi: 10.1103/PhysRevA.78.042333
    YIN Hualei, CHEN Tengyun, YU Zongwen, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501. doi: 10.1103/PhysRevLett.117.190501
    LUCAMARINI M, YUAN Z L, DYNES J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 2018, 557(7705): 400–403. doi: 10.1038/s41586-018-0066-6
    WANG Shuang, HE Deyong, YIN Zhenqiang, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046. doi: 10.1103/PhysRevX.9.021046
    WU Yadong, ZHOU Jian, GONG Xinbao, et al. Continuous-variable measurement-device-independent multipartite quantum communication[J]. Physical Review A, 2016, 93(2): 022325. doi: 10.1103/PhysRevA.93.022325
    OTTAVIANI C, LUPO C, LAURENZA R, et al. High-rate secure quantum conferencing[J]. ArXiv: 1709.06988, 2017.
    WANG Yu, TIAN Caixing, SU Qi, et al. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state[J]. Science China Information Sciences, 2019, 62(7): 72501. doi: 10.1007/s11432-018-9705-x
    MENICUCCI N C, VAN LOOCK P, GU M, et al. Universal quantum computation with continuous-variable cluster states[J]. Physical Review Letters, 2006, 97(11): 110501. doi: 10.1103/PhysRevLett.97.110501
    YUKAWA M, UKAI R, VAN LOOCK P, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Physical Review A, 2008, 78(1): 012301. doi: 10.1103/PhysRevA.78.012301
    BEIMEL A. Secret-sharing schemes: A survey[C]. The 3rd International Conference on Coding and Cryptology (IWCC’11), Qingdao, China, 2011: 11–46.
    ADESSO G and ILLUMINATI F. Entanglement in continuous-variable systems: Recent advances and current perspectives[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(28): 7821–7880. doi: 10.1088/1751-8113/40/28/S01
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (2596) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return