Citation: | Longwen WU, Jinpeng NIU, Zhao WANG, Shengyang HE, Yaqin ZHAO. Primary Signal Suppression Based on Synchrosqueezed Wavelet Transform[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2045-2052. doi: 10.11999/JEIT190650 |
In Specific Emitter Identification (SEI), the stability of individual features and final correct identification rate are always declined due to the influence of the primary signal with high energy on the individual features. To solve the problem above, a primary signal suppression algorithm based on synchrosqueezed wavelet transform is exploited for specific emitter identification in this paper. Firstly, a denoising method based on stationary wavelet transform is applied to preprocess the noised signal; Then, the detection and suppression of the primary signal from time-frequency distribution are developed, where root mean square error and Pearson correlation coefficient are used as numerical indicators to measure the effectiveness of the proposed primary signal suppression algorithm; Finally, a feature extraction based on box-counting dimension and a classification based on support vector machine are exploited to verify the identification performance. The simulation results show that the correct identification rate of SEI using the proposed primary signal suppression outperforms the conventional SEI with 10%, which proves the practical improvement of the proposed primary signal suppression algorithm on specific emitter identification.
WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the short time fourier transform and convolutional neural networks[C]. The 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 2017: 1–5. doi: 10.1109/CISP-BMEI.2017.8302111.
|
LIANG Kaiqiang, HUANG Zhen, HU Dexiu, et al. An individual emitter recognition method combining bispectrum with wavelet entropy[C]. 2015 IEEE International Conference on Progress in Informatics and Computing, Nanjing, China, 2015: 206–210. doi: 10.1109/PIC.2015.7489838.
|
GUO Haizhao, ZHANG Xiaonu, YANG Libo, et al. Improved fisher linear discriminant analysis for feature extraction of unintentional modulation on pulse by combining ambiguity function with wavelet transform[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4. doi: 10.1049/cp.2015.1108.
|
LI Yibing, GE Juan, LIN Yun, et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21(11): 4254–4260. doi: 10.1007/s11771-014-2422-5
|
曹银萍, 郭璐. 基于MATLAB的小波分析在信号去噪中的应用[J]. 信息记录材料, 2018, 19(7): 85–87. doi: 10.16009/j.cnki.cn13-1295/tq.2018.07.056
CAO Yinping and GUO Lu. Application of wavelet analysis based on MATLAB in signal denoising[J]. Information Recording Materials, 2018, 19(7): 85–87. doi: 10.16009/j.cnki.cn13-1295/tq.2018.07.056
|
DUDCZYK J and KAWALEC A. Fractal features of specific emitter identification[J]. Acta Physica Polonica A, 2013, 124(2): 406–409. doi: 10.12693/APhysPolA.124.406
|
DUDCZYK J and KAWALEC A. Identification of emitter sources in the aspect of their fractal features[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(3): 623–628. doi: 10.2478/bpasts-2013-0065
|
WU Xiaopo, SHI Yangming, MENG Weibo, et al. Specific emitter identification for satellite communication using probabilistic neural networks[J]. International Journal of Satellite Communications and Networking, 2019, 37(3): 283–291. doi: 10.1002/sat.1286
|
王欢欢, 张涛, 孟凡玉. 基于时频域细微特征的辐射源个体识别[J]. 信息工程大学学报, 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006
WANG Huanhuan, ZHANG Tao, and MENG Fanyu. Specific emitter identification based on time-frequency domain characteristic[J]. Journal of Information Engineering University, 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006
|
WANG Huanhuan and ZHNAG Tao. Specific emitter identification based on fractal and wavelet theories[C]. The 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2017: 1613–1617. doi: 10.1109/IAEAC.2017.8054286.
|
WANG Wei, LIU Hui, YANG Jun’an, et al. Specific emitter identification using decomposed hierarchical feature extraction methods[C]. The 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, China, 2017: 1639–1643. doi: 10.1109/FSKD.2017.8393011.
|
HE Boxiang, WANG Fanggang, LIU Yu, et al. Specific emitter identification via multiple distorted receivers[C]. 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757066.
|
潘一苇, 彭华, 李天昀, 等. 一种新的时分多址信号射频特征及其在特定辐射源识别中的应用[J]. 电子与信息学报, 2019, 41(11): 2661–2668. doi: 10.11999/JEIT190163
PAN Yiwei, PENG Hua, LI Tianyun, et al. A novel radiometric signature of time-division multiple access signals and its application to specific emitter identification[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2661–2668. doi: 10.11999/JEIT190163
|
潘一苇, 杨司韩, 彭华, 等. 基于矢量图的特定辐射源识别方法[J]. 电子与信息学报, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329
PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification using signal trajectory image[J]. Journal of Electronics &Information Technology, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329
|
LI Suyi, LIU Guangda, and LIN Zhenbao. Comparisons of wavelet packet, lifting wavelet and stationary wavelet transform for de-noising ECG[C]. The 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 2009: 491–494. doi: 10.1109/ICCSIT.2009.5234650.
|
王勇, 邹辉, 饶勤菲, 等. 结合空域噪声信息的小波脊提取算法[J]. 电子科技大学学报, 2018, 47(4): 613–620. doi: 10.3969/j.issn.1001-0548.2018.04.022
WANG Yong, ZOU Hui, RAO Qinfei, et al. A wavelet ridge extraction algorithm combined with spatial noise information[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(4): 613–620. doi: 10.3969/j.issn.1001-0548.2018.04.022
|
唐智灵. 通信辐射源非线性个体识别方法研究[D]. [博士论文], 西安电子科技大学, 2013.
TANG Zhiling. A study of nonlinear method for specific communications emitter identification[D]. [Ph. D. dissertation], Xidian University, 2013.
|
WU Longwen, ZHAO Yaqin, WANG Zhao, et al. Specific emitter identification using fractal features based on box-counting dimension and variance dimension[C]. 2017 IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 2017: 226–231. doi: 10.1109/ISSPIT.2017.8388646.
|
BIHL T J, BAUER K W, and TEMPLE M A. Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1862–1874. doi: 10.1109/TIFS.2016.2561902
|
WU Longwen, ZHAO Yaqin, FENG Mengfei, et al. Specific emitter identification using IMF-DNA with a joint feature selection algorithm[J]. Electronics, 2019, 8(9): 934. doi: 10.3390/electronics8090934
|
CHEN Taowei, JIN Weidong, and LI Jie. Feature extraction using surrounding-line integral bispectrum for radar emitter signal[C]. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 294–298. doi: 10.1109/IJCNN.2008.4633806.
|