Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Faping LU, Hongxing WANG, Chuanhui LIU, Jiafang KANG, Dawei YANG. PSWFs Frequency Domain Modulation and Demodulation Method[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1888-1895. doi: 10.11999/JEIT190642
Citation: Faping LU, Hongxing WANG, Chuanhui LIU, Jiafang KANG, Dawei YANG. PSWFs Frequency Domain Modulation and Demodulation Method[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1888-1895. doi: 10.11999/JEIT190642

PSWFs Frequency Domain Modulation and Demodulation Method

doi: 10.11999/JEIT190642
Funds:  The National Natural Science Foundation of China (61701518), The Special Foundation Project of Taishan Scholar of Shandong Province (ts20081130)
  • Received Date: 2019-08-26
  • Rev Recd Date: 2020-04-29
  • Available Online: 2020-05-13
  • Publish Date: 2020-08-18
  • In view of the problem of high complexity for non-sinusoidal time domain modulation algorithms based on Prolate Spheroidal Wave Functions (PSWFs), spatial mapping is introduced to analyze the complete orthogonality and derive the minimum number of sampling points of PSWFs in the frequency domain. On this basis, the complex domain mapping and FFT/IFFT signal processing framework are introduced, and the PSWFs frequency domain modulation and demodulation method are proposed. The proposed method extends PSWFs signal processing from time domain to frequency domain, providing a possibility for exploring and studying the application of PSWFs signal to 5G, beyond 5G which use frequency domain signal processing. Theory and numerical analysis show that, compared with the time domain modulation, the proposed method can reduces the complexity of the algorithm from O(2Qg2) to O(g2+glog2g) without changing the system spectral efficiency, system error performance, modulation signal energy aggregation, and peak-to-average power ratio.

  • loading
  • NISSEL R, SCHWARZ S, and RUPP M. Filter bank multicarrier modulation schemes for future mobile communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1768–1782. doi: 10.1109/JSAC.2017.2710022
    SOLDANI D, GUO Y J, BARANI B, et al. 5G for ultra-reliable low-latency communications[J]. IEEE Network, 2018, 32(2): 6–7. doi: 10.1109/MNET.2018.8329617
    黄容兰, 刘云, 李啟尚, 等. 基于非正交多址接入中继通信系统的功率优化[J]. 电子与信息学报, 2019, 41(8): 1909–1915. doi: 10.11999/JEIT180842

    HUANG Ronglan, LIU Yun, LI Qishang, et al. Power allocation optimization of cooperative relaying systems using non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1909–1915. doi: 10.11999/JEIT180842
    申滨, 吴和彪, 崔太平, 等. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270

    SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270
    王汝言, 梁颖杰, 崔亚平. 车辆网络多平台卸载智能资源分配算法[J]. 电子与信息学报, 2020, 42(1): 263–270. doi: 10.11999/JEIT190074

    WANG Ruyan, LIANG Yingjie, and CUI Yaping. Intelligent resource allocation algorithm for multi-platform offloading in vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(1): 263–270. doi: 10.11999/JEIT190074
    IBRAHIM M, DEMIR A F, and ARSLAN H. Time-frequency warped waveforms[J]. IEEE Communications Letters, 2019, 23(1): 36–39. doi: 10.1109/LCOMM.2018.2882498
    SLEPIAN D and POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-I[J]. The Bell System Technical Journal, 1961, 20(1): 43–63. doi: 10.1002/j.1538-7305.1961.tb03976.x
    王红星, 陆发平, 刘传辉, 等. 椭圆球面波信号间交叉项时频分布特性研究[J]. 电子与信息学报, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877

    WANG Hongxing, LU Faping, LIU Chuanhui, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877
    OSIPOV A, ROKHLIN V, and XIAO Hong. Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation[M]. Boston: Springer, 2013: 33–66. doi: 10.1007/978-1-4614-8259-8.
    CHEN Zhaonan, WANG Hongxing, LIU Xiguo, et al. Maximal capacity nonorthogonal pulse shape modulation[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1699–1708. doi: 10.1016/j.cja.2015.09.008
    SLEPIAN D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case[J]. The Bell System Technical Journal, 1978, 57(5): 1371–1430. doi: 10.1002/j.1538-7305.1978.tb02104.x
    SELINIS I, KATSAROS K, ALLAYIOTI M, et al. The race to 5G era; LTE and Wi-Fi[J]. IEEE Access, 2018, 6: 56598–56636. doi: 10.1109/ACCESS.2018.2867729
    HAMMOODI A, AUDAH L, and TAHER M A. Green coexistence for 5G waveform candidates: A review[J]. IEEE Access, 2019, 7: 10103–10126. doi: 10.1109/ACCESS.2019.2891312
    HARMUTH H F. Frequency-sharing and spread-spectrum transmission with large relative bandwidth[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, EMC-20(1): 232–239. doi: 10.1109/TEMC.1978.303653
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (2151) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return