Citation: | Dapeng WU, Hao ZHENG, Yaping CUI. Service-oriented Coordination agent Design for Network Slicing in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1910-1917. doi: 10.11999/JEIT190635 |
In view of the lack of deployment and management of slicing in vehicular network, a slice coordination agent of vehicular network slicing structure is designed. Firstly, based on the K-means++ clustering algorithm, the vehicle network communication services are clustered according to the similarity and then mapped into different slices. Secondly, considering the imbalance of radio resource utilization caused by the space-time characteristic among application scenarios, a shared proportional fairness scheme is proposed to utilize radio resources efficiently and differently. Finally, in order to ensure the requirements of slicing service, linear programming obstacle method is used to solve the optimal slice weight distribution to maximize the slice load variation tolerance. Simulation results show that the shared proportional fairness scheme has smaller average Bit Transmission Delay (BTD) than the static slicing scheme, and the optimal slice weight distribution can be obtained under different user load distribution scenarios. The BTD gain achieves 1.4038 in the uniform user load scenario with 30 users per slice.
5G PPP Architecture Working Group. 5G empowering vertical industries[EB/OL]. https://5g-ppp.eu/wpcontent/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf, 2016.
|
RAHMAN M M, DESPINS C, and AFFES S. Design optimization of wireless access virtualization based on cost & QoS trade-off utility maximization[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6146–6162. doi: 10.1109/TWC.2016.2580505
|
LIANG Chengchao and YU F R. Wireless network virtualization: A survey, some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 358–380. doi: 10.1109/COMST.2014.2352118
|
CHATRAS B, KWONG U S T, and BIHANNIC N. NFV enabling network slicing for 5G[C]. The 20th Conference on Innovations in Clouds, Internet and Networks, Paris, France, 2017: 219–225. doi: 10.1109/ICIN.2017.7899415.
|
COSTA-PEREZ X, SWETINA J, GUO Tao, et al. Radio access network virtualization for future mobile carrier networks[J]. IEEE Communications Magazine, 2013, 51(7): 27–35. doi: 10.1109/MCOM.2013.6553675
|
ABDELWAHAB S, HAMDAOUI B, GUIZANI M, et al. Network function virtualization in 5G[J]. IEEE Communications Magazine, 2016, 54(4): 84–91. doi: 10.1109/MCOM.2016.7452271
|
ZHOU Xuan, LI Rongpeng, CHEN Tao, et al. Network slicing as a service: Enabling enterprises’ own software-defined cellular networks[J]. IEEE Communications Magazine, 2016, 54(7): 146–153. doi: 10.1109/MCOM.2016.7509393
|
KATSALIS K, NIKAEIN N, SCHILLER E, et al. Network slices toward 5G communications: Slicing the LTE network[J]. IEEE Communications Magazine, 2017, 55(8): 146–154. doi: 10.1109/MCOM.2017.1600936
|
LIU Xiangru, LI Muxuan, SONG Mei, et al. Wireless virtual network embedding based on spectrum sharing allocation[C]. The 11th International Conference on Computer Science & Education (ICCSE), Nagoya, Japan, 2016: 670–675. doi: 10.1109/ICCSE.2016.7581660.
|
ZHENG Jiaxiao, CABALLERO P, DE VECIANA G, et al. Statistical multiplexing and traffic shaping games for network slicing[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2528–2541. doi: 10.1109/TNET.2018.2870184
|
KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi: 10.1109/ACCESS.2019.2892180
|
CAMPOLO C, MOLINARO A, IERA A, et al. 5G network slicing for vehicle-to-everything services[J]. IEEE Wireless Communications, 2017, 24(6): 38–45. doi: 10.1109/MWC.2017.1600408
|
3GPP. TR 38.802(v14.2.0) Technical specification group radio access network: Study on new radio (NR) access technology physical layer aspects[S]. 2017.
|
KYÖSTI P, MEINILÄ J, HENTILÄ L, et al. WINNER II channel models[R]. IST-4-027756 WINNER II D1.1.2 V1.2, 2007.
|
YANG S J and DE VECIANA G. Enhancing both network and user performance for networks supporting best effort traffic[J]. IEEE/ACM Transactions on Networking, 2004, 12(2): 349–360. doi: 10.1109/TNET.2004.826280
|
3GPP. TS36.300 v14.0.0 Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2[S]. 2016.
|
BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 139–143.
|
TIAA-FUTURE车联网联合工作组. 智能网联汽车基本应用[R]. 北京: 车载信息服务产业应用联盟, 2016: 18.
TIAA-FUTURE Vehicular network Joint Working group. Intelligent and connected vehicle basic applications[R]. Beijing: Telematics Industry Application Alliance, 2016: 18.
|
CHENAND L, CHEN Wenwen, WANG Bin, et al. System-level simulation methodology and platform for mobile cellular systems[J]. IEEE Communications Magazine, 2011, 49(7): 148–155. doi: 10.1109/MCOM.2011.5936168
|
YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC.2013.040413.120676
|