Citation: | Weidong JI, Xiaoqing SUN, Ping LIN, Qiang LUO, Haotian XU. Natural Computing Method Based on Nonlinear Dimension Reduction[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1982-1989. doi: 10.11999/JEIT190623 |
Many optimization problems develop into high-dimensional large-scale optimization problems in the process of the development of artificial intelligence. Although the high-dimensional problem can avoid the algorithm falling into local optimum, it has no advantage in convergence speed and time feasibility. Therefore, the natural computing method for Nonlinear Dimension Reduction (NDR) is proposed. This strategy does not depend on specific algorithm and has universality. In this method, the initialized N individuals are regarded as a matrix of N rows and D columns, and then the maximum linear independent group is calculated for the column vector of the matrix, so as to reduce the redundancy of the matrix and reduce the dimension. In this process, since any remaining column vector group can be represented by the maximum linearly independent group, a random coefficient is applied to the maximum linearly independent group to maintain the diversity and integrity of the population. The standard genetic algorithm and particle swarm optimization using NDR strategy compare with Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and the four mainstream algorithms for dimension optimization. Experiments show that the improved algorithm has strong global convergence ability and better time complexity for most standard test functions.
DE CASTRO L N. Fundamentals of natural computing: An overview[J]. Physics of Life Reviews, 2007, 4(1): 1–36. doi: 10.1016/j.plrev.2006.10.002
|
刘鑫, 李大海. 基于遗传算法的相位差异技术图像恢复[J]. 四川大学学报: 自然科学版, 2018, 55(4): 745–751. doi: 10.3969/j.issn.0490-6756.2018.04.015
LIU Xin and LI Dahai. Recovering image using a genetic algorithm based phase diversity technology[J]. Journal of Sichuan University:Natural Science Edition, 2018, 55(4): 745–751. doi: 10.3969/j.issn.0490-6756.2018.04.015
|
魏鹏, 罗红波, 赵康, 等. 基于蚁群算法的运动时间优化算法研究[J]. 四川大学学报: 自然科学版, 2018, 55(6): 1171–1179. doi: 10.3969/j.issn.0490-6756.2018.06.008
WEI Peng, LUO Hongbo, ZHAO Kang, et al. Optimization of multi-joint robot motion of hydraulic drilling vehicle based on ant colony algorithm[J]. Journal of Sichuan University:Natural Science Edition, 2018, 55(6): 1171–1179. doi: 10.3969/j.issn.0490-6756.2018.06.008
|
邓昌明, 李晨, 邓可君, 等. 基因遗传算法在文本情感分类中的应用[J]. 四川大学学报: 自然科学版, 2019, 56(1): 45–49. doi: 10.3969/j.issn.0490-6756.2019.01.010
DENG Changming, LI Chen, DENG Kejun, et al. Application of genetic algorithm in text sentiment classification[J]. Journal of Sichuan University:Natural Science Edition, 2019, 56(1): 45–49. doi: 10.3969/j.issn.0490-6756.2019.01.010
|
王蓉芳, 焦李成, 刘芳, 等. 自适应动态控制种群规模的自然计算方法[J]. 软件学报, 2012, 23(7): 1760–1772. doi: 10.3724/SP.J.1001.2012.04151
WANG Rongfang, JIAO Licheng, LIU Fang, et al. Nature computation with self-adaptive dynamic control strategy of population size[J]. Journal of Software, 2012, 23(7): 1760–1772. doi: 10.3724/SP.J.1001.2012.04151
|
SUN Wei, LIN Anping, YU Hongshan, et al. All-dimension neighborhood based particle swarm optimization with randomly selected neighbors[J]. Information Sciences, 2017, 405: 141–156. doi: 10.1016/j.ins.2017.04.007
|
刘云, 易松. 双变换算法在多维序列数据分析中的优化研究[J]. 四川大学学报: 自然科学版, 2019, 56(4): 633–638. doi: 10.3969/j.issn.0490-6756.2019.04.009
LIU Yu and YI Song. Research on optimization of double transform algorithm in multidimensional sequence data analysis[J]. Journal of Sichuan University:Natural Science Edition, 2019, 56(4): 633–638. doi: 10.3969/j.issn.0490-6756.2019.04.009
|
贺毅朝, 王熙照, 张新禄, 等. 基于离散差分演化的KPC问题降维建模与求解[J]. 计算机学报, 2019, 42(10): 267–2280.
HE Yichao, WANG Xizhao, ZHANG Xinlu, et al. Modeling and solving by dimensionality reduction of kpc problem based on discrete differential evolution[J]. Chinese Journal of Computers, 2019, 42(10): 267–2280.
|
WANG Xuesong, KONG Yi, CHENG Yuhu, et al. Dimensionality reduction for hyperspectral data based on sample-dependent repulsion graph regularized auto-encoder[J]. Chinese Journal of Electronics, 2017, 26(6): 1233–1238. doi: 10.1049/cje.2017.07.012
|
XU Guiping, CUI Quanlong, SHI Xiaohu, et al. Particle swarm optimization based on dimensional learning strategy[J]. Swarm and Evolutionary Computation, 2019, 45: 33–51. doi: 10.1016/j.swevo.2018.12.009
|
WEI Jingxuan and WANG Yuping. A dynamical particle swarm algorithm with dimension mutation[C]. 2006 International Conference on Computational Intelligence and Security, Guangzhou, China, 2006: 254–257. doi: 10.1109/ICCIAS.2006.294131.
|
纪震, 周家锐, 廖惠莲, 等. 智能单粒子优化算法[J]. 计算机学报, 2010, 33(3): 556–561. doi: 10.3724/SP.J.1016.2010.00556
JI Zhen, ZHOU Jiarui, LIAO Huilian, et al. A novel intelligent single particle optimizer[J]. Chinese Journal of Computers, 2010, 33(3): 556–561. doi: 10.3724/SP.J.1016.2010.00556
|
拓守恒, 邓方安, 周涛. 一种利用膜计算求解高维函数的全局优化算法[J]. 计算机工程与应用, 2011, 47(19): 27–30. doi: 10.3778/j.issn.1002-8331.2011.19.009
TUO Shouheng, DENG Fang’an, and ZHOU Tao. Algorithm for solving global optimization problems of multi-dimensional function based on membrane computing[J]. Computer Engineering and Applications, 2011, 47(19): 27–30. doi: 10.3778/j.issn.1002-8331.2011.19.009
|
CERVANTE L, XUE Bing, SHANG Lin, et al. A dimension reduction approach to classification based on particle swarm optimisation and rough set theory[C]. The 25th Australasian Joint Conference on Artificial Intelligence, Sydney, Australia, 2012: 313–325.
|
拓守恒. 一种基于人工蜂群的高维非线性优化算法[J]. 微电子学与计算机, 2012, 29(7): 42–46. doi: 10.19304/j.cnki.issn1000-7180.2012.07.010
TUO Shouheng. A new high-dimensional nonlinear optimization algorithm based on artificial bee colony[J]. Microelectronics &Computer, 2012, 29(7): 42–46. doi: 10.19304/j.cnki.issn1000-7180.2012.07.010
|
JIN Xin, LIANG Yongquan, TIAN Dongping, et al. Particle swarm optimization using dimension selection methods[J]. Applied Mathematics and Computation, 2013, 219(10): 5185–5197. doi: 10.1016/j.amc.2012.11.020
|
梁静, 刘睿, 于坤杰, 等. 求解大规模问题协同进化动态粒子群优化算法[J]. 软件学报, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
LIANG Jing, LIU Run, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative coevolution for large scale global optimization[J]. Journal of Software, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
|
YANG Chenghong, YANG Huaishuo, CHUANG L, et al. PBMDR: A particle swarm optimization-based multifactor dimensionality reduction for the detection of multilocus interactions[J]. Journal of Theoretical Biology, 2019, 461: 68–75. doi: 10.1016/j.jtbi.2018.10.012
|
宋丹, 石勇, 邓宸伟. 一种结合PCA与信息熵的SIFT特征向量自适应降维算法[J]. 小型微型计算机系统, 2017, 38(7): 1636–1641. doi: 10.3969/j.issn.1000-1220.2017.07.039
SONG Dan, SHI Yong, DENG Chenwei, et al. Self -adaptive descending dimension algorithm of sift feature vector combined with PCA and information entropy[J]. Journal of Chinese Computer Systems, 2017, 38(7): 1636–1641. doi: 10.3969/j.issn.1000-1220.2017.07.039
|
CHEN Sibao, DING C H O, and LUO Bin. Linear regression based projections for dimensionality reduction[J]. Information Sciences, 2018, 467: 74–86. doi: 10.1016/j.ins.2018.07.066
|
ARIYARATNE M K A, FERNANDO T G I, and WEERAKOON S. Solving systems of nonlinear equations using a modified firefly algorithm (MODFA)[J]. Swarm and Evolutionary Computation, 2019, 48: 72–92. doi: 10.1016/j.swevo.2019.03.010
|
刘振焘, 徐建平, 吴敏, 等. 语音情感特征提取及其降维方法综述[J]. 计算机学报, 2018, 41(12): 2833–2851. doi: 10.11897/SP.J.1016.2018.02833
LIU Zhentao, XU Jianping, WU Min, et al. Review of emotional feature extraction and dimension reduction method for speech emotion recognition[J]. Chinese Journal of Computers, 2018, 41(12): 2833–2851. doi: 10.11897/SP.J.1016.2018.02833
|
孟凡超, 初佃辉, 李克秋, 等. 基于混合遗传模拟退火算法的SaaS构件优化放置[J]. 软件学报, 2016, 27(4): 916–932. doi: 10.13328/j.cnki.jos.004965
MENG Fanchao, CHU Dianhui, LI Keqiu, et al. Solving SaaS components optimization placement problem with hybird genetic and simulated annealing algorithm[J]. Journal of Software, 2016, 27(4): 916–932. doi: 10.13328/j.cnki.jos.004965
|
KENNEDY J and EBERHART E. Particle swarm optimization[C]. 1995 International Conference on Neural Networks, Perth, Australia, 1995: 1942–1948.
|
CHENG Ran and JIN Yaochu. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015, 291: 43–60. doi: 10.1016/j.ins.2014.08.039
|
SABAR N R, ABAWAJY J, and YEARWOOD J. Heterogeneous cooperative co-evolution memetic differential evolution algorithm for big data optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 315–327. doi: 10.1109/TEVC.2016.2602860
|
CHENG Ran and JIN Yaochu. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191–204. doi: 10.1109/TCYB.2014.2322602
|