Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Tongjun WANG, Feng WU, Wei XU. A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
Citation: Tongjun WANG, Feng WU, Wei XU. A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618

A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars

doi: 10.11999/JEIT190618
Funds:  The Scientific and Technological Project in Henan Province (172102210450, 182102210533, 182102110160), The Key Scientific Research Projects in Institutions of Henan Higher Learning (18B520035)
  • Received Date: 2019-08-13
  • Rev Recd Date: 2020-02-23
  • Available Online: 2020-03-21
  • Publish Date: 2020-08-18
  • As the azimuth angular resolution is limited by the antenna length in automotive radars, a novel imaging approach for improving azimuth angular resolution of automotive radars is proposed based on multi-beam real-aperture radar images combination processing. Firstly, the antenna beam of the phased array antenna is electronically scanned to obtain forward-looking real-aperture radar images. Afterwards, multiple real-aperture radar images are coherent accumulated according to the imaging geometry of automotive radar to improve azimuth angular resolution. Simulation results validate the proposed imaging approach to improve the azimuth angular resolution of automotive radar.

  • loading
  • XU Zhihuo, SHI Quan, SUN Ling, et al. Novel orthogonal random phase-coded pulsed radar for automotive application[J]. Journal of Radars, 2018, 7(3): 364–375. doi: 10.12000/JR17083
    PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
    TAK J, JEONG E, and CHOI J. Metamaterial absorbers for 24-GHz automotive radar applications[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(6): 577–593. doi: 10.1080/09205071.2017.1297257
    GUO Kunyi, HOARE E G, JASTEH D, et al. Road edge recognition using the stripe hough transform from millimeter-wave radar images[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 825–833. doi: 10.1109/TITS.2014.2342875
    MAO Xuesong, INOUE D, MATSUBARA H, et al. Demonstration of in-car doppler laser radar at 1.55 μm for range and speed measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 599–607. doi: 10.1109/TITS.2012.2230325
    LEE J E, LIM H S, JEONG S H, et al. Enhanced iron-tunnel recognition for automotive radars[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4412–4418. doi: 10.1109/TVT.2015.2460992
    KELLNER D, BARJENBRUCH M, KLAPPSTEIN J, et al. Tracking of extended objects with high-resolution Doppler radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1341–1353. doi: 10.1109/TITS.2015.2501759
    WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542
    WANG H N, HUANG Yingwei, and CHUN S J. Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 965–973. doi: 10.1109/TVT.2016.2565608
    ASKELAND S A and EKMAN T. Tracking with a high-resolution 2D spectral estimation based automotive radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2418–2423. doi: 10.1109/TITS.2015.2407571
    LEE M S and KIM Y H. Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2290–2297. doi: 10.1109/TVT.2010.2045665
    HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 169–170.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 169–170.
    DEVADITHYA S, PEDROSS-ENGEL A, WATTS C M, et al. GPU-accelerated enhanced resolution 3-D SAR imaging with dynamic metamaterial antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 5096–5103. doi: 10.1109/TMTT.2017.2766060
    CHANG W Y, WU Mengche, CHANG Yanglang, et al. GPU acceleration of adaptive local kriging applied to retrieving slant-range surface motion maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4317–4325. doi: 10.1109/JSTARS.2018.2871877
    WIJAYASIRI A, BANERJEE T, RANKA S, et al. Dynamic data-driven SAR image reconstruction using multiple GPUs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4326–4338. doi: 10.1109/JSTARS.2018.2873198
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (2890) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return