Advanced Search
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Pingfan XIA, Zhiwei NI, Xuhui ZHU, Liping NI. Selective Ensemble Method of Extreme Learning Machine Based on Double-fault Measure[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2756-2764. doi: 10.11999/JEIT190617
Citation: Pingfan XIA, Zhiwei NI, Xuhui ZHU, Liping NI. Selective Ensemble Method of Extreme Learning Machine Based on Double-fault Measure[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2756-2764. doi: 10.11999/JEIT190617

Selective Ensemble Method of Extreme Learning Machine Based on Double-fault Measure

doi: 10.11999/JEIT190617
Funds:  The National Natural Science Foundation of China (91546108, 71521001), The Anhui Provincial Natural Science Foundation (1908085QG298, 1908085MG232), The Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, The Fundamental Research Funds for the Central Universities (JZ2019HGTA0053, JZ2019HGBZ0128)
  • Received Date: 2019-08-12
  • Rev Recd Date: 2020-06-21
  • Available Online: 2020-07-17
  • Publish Date: 2020-11-16
  • Extreme Learning Machine (ELM) has unique advantages such as fast learning speed, simplicity of implementation, and excellent generalization performance. However, the performance of a single ELM is unstable in classification. Ensemble learning can effectively improve the classification ability of single ELMs, but it may incur the rapid increase in memory space and computational overheads as the increase of the data size and the number of ELMs. To address this issue, a Selective Ensemble approach of ELM based on Double-Fault measure (DFSEE) is proposed, and it is evaluated by theoretical and experimental analysis simultaneously. Firstly, multiple training subsets extracted from a training dataset are obtained employing the bootstrap sampling method, and an initial pool of base ELMs is constructed by independently training multiple ELMs on different training subsets; Secondly, the ELMs in pool are sorted in ascending order according to their double-fault measures of those ELMs. Finally, it starts with one ELM and grows the ensemble by adding new base ELMs according to the order, the final ensemble of ELMs can be achieved with the best classification ability, and the theoretical basis of DFSEE is analyzed. Experimental results on 10 benchmark classification tasks show that DFSEE can achieve better results with less number of ELMs by comparing with other approaches, and its validity and significance.
  • loading
  • HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126
    YANG Yifan, ZHANG Hong, YUAN D, et al. Hierarchical extreme learning machine based image denoising network for visual Internet of Things[J]. Applied Soft Computing, 2019, 74: 747–759. doi: 10.1016/j.asoc.2018.08.046
    吴超, 李雅倩, 张亚茹, 等. 用于表示级特征融合与分类的相关熵融合极限学习机[J]. 电子与信息学报, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186

    WU Chao, LI Yaqian, ZHANG Yaru, et al. Correntropy-based fusion extreme learning machine for representation level feature fusion and classification[J]. Journal of Electronics &Information Technology, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186
    陆慧娟, 安春霖, 马小平, 等. 基于输出不一致测度的极限学习机集成的基因表达数据分类[J]. 计算机学报, 2013, 36(2): 341–348. doi: 10.3724/SP.J.1016.2013.00341

    LU Huijuan, AN Chunlin, MA Xiaoping, et al. Disagreement measure based ensemble of extreme learning machine for gene expression data classification[J]. Chinese Journal of Computers, 2013, 36(2): 341–348. doi: 10.3724/SP.J.1016.2013.00341
    LAN Y, SOH Y C, and HUANG Guangbin. Ensemble of online sequential extreme learning machine[J]. Neurocomputing, 2009, 72(13/15): 3391–3395. doi: 10.1016/j.neucom.2009.02.013
    KSIENIEWICZ P, KRAWCZYK B, and WOŹNIAK M M. Ensemble of Extreme Learning Machines with trained classifier combination and statistical features for hyperspectral data[J]. Neurocomputing, 2018, 271: 28–37. doi: 10.1016/j.neucom.2016.04.076
    李炜, 李全龙, 刘政怡. 基于加权的K近邻线性混合显著性目标检测[J]. 电子与信息学报, 2019, 41(10): 2442–2449. doi: 10.11999/JEIT190093

    LI Wei, LI Quanlong, and LIU Zhengyi. Salient object detection using weighted K-nearest neighbor linear blending[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2442–2449. doi: 10.11999/JEIT190093
    YKHLEF H and BOUCHAFFRA D. An efficient ensemble pruning approach based on simple coalitional games[J]. Information Fusion, 2017, 34: 28–42. doi: 10.1016/j.inffus.2016.06.003
    CAO Jingjing, LI Wenfeng, MA Congcong, et al. Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition[J]. Information Fusion, 2018, 41: 68–79. doi: 10.1016/j.inffus.2017.08.002
    MARTÍNEZ-MUÑOZ G, HERNÁNDEZ-LOBATO D, and SUÁREZ A. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 245–259. doi: 10.1109/TPAMI.2008.78
    MARTÍNEZ-MUÑOZ G and SUÁREZ A. Pruning in ordered bagging ensembles[C]. The 23rd International Conference on Machine learning, New York, USA, 2006: 609-616. doi: 10.1145/1143844.1143921.
    GUO Li and BOUKIR S. Margin-based ordered aggregation for ensemble pruning[J]. Pattern Recognition Letters, 2013, 34(6): 603–609. doi: 10.1016/j.patrec.2013.01.003
    DAI Qun, ZHANG Ting, and LIU Ningzhong. A new reverse reduce-error ensemble pruning algorithm[J]. Applied Soft Computing, 2015, 28: 237–249. doi: 10.1016/j.asoc.2014.10.045
    ZHOU Zhihua, WU Jianxin, and TANG Wei. Ensembling neural networks: Many could be better than all[J]. Artificial Intelligence, 2002, 137(1/2): 239–263. doi: 10.1016/S0004-3702(02)00190-X
    CAVALCANTI G D C, OLIVEIRA L S, MOURA T J M, et al. Combining diversity measures for ensemble pruning[J]. Pattern Recognition Letters, 2016, 74: 38–45. doi: 10.1016/j.patrec.2016.01.029
    MAO Shasha, CHEN Jiawei, JIAO Licheng, et al. Maximizing diversity by transformed ensemble learning[J]. Applied Soft Computing, 2019, 82: 105580. doi: 10.1016/j.asoc.2019.105580
    TANG E K, SUGANTHAN P N, and YAO Xin. An analysis of diversity measures[J]. Machine Learning, 2006, 65(1): 247–271. doi: 10.1007/s10994-006-9449-2
    GIACINTO G and ROLI F. Design of effective neural network ensembles for image classification purposes[J]. Image and Vision Computing, 2001, 19(9/10): 699–707. doi: 10.1016/S0262-8856(01)00045-2
    FUSHIKI T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and Computing, 2011, 21(2): 137–146. doi: 10.1007/s11222-009-9153-8
    ZHOU Hongfa, ZHAO Xuehan, and WANG Xiao. An effective ensemble pruning algorithm based on frequent patterns[J]. Knowledge-Based Systems, 2014, 56: 79–85. doi: 10.1016/j.knosys.2013.10.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views (2063) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return