Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Qingjun YUAN, An WANG, Yongjuan WANG, Tao WANG. An Improved Template Analysis Method Based on Power Traces Preprocessing with Manifold Learning[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1853-1861. doi: 10.11999/JEIT190598
Citation: Qingjun YUAN, An WANG, Yongjuan WANG, Tao WANG. An Improved Template Analysis Method Based on Power Traces Preprocessing with Manifold Learning[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1853-1861. doi: 10.11999/JEIT190598

An Improved Template Analysis Method Based on Power Traces Preprocessing with Manifold Learning

doi: 10.11999/JEIT190598
Funds:  The National Natural Science Foundation of China (61872040), The Fund of Henan Key Laboratory of Network Cryptography Technology (LNCT2019-S02), The National Cryptographic Development Fund of the 13th Five-Year Plan (MMJJ20170201)
  • Received Date: 2019-08-07
  • Rev Recd Date: 2019-10-31
  • Available Online: 2019-11-27
  • Publish Date: 2020-08-18
  • As the key object in the process of template analysis, power traces have the characteristics of high dimension, less effective dimension and unaligned. Before effective preprocessing, template attack is difficult to work. Based on the characteristics of energy data, a global alignment method based on manifold learning is proposed to preserve the changing characteristics of power traces, and then the dimensionality of data is reduced by linear projection. The method is validated in Panda 2018 challenge1 standard datasets respectively. The experimental results show that the feature extraction effect of this method is superior over that of traditional PCA and LDA methods. Finally, the method of template analysis is used to recover the key, and the recovery success rates can reach 80% with only two traces.
  • loading
  • KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. The 13th Annual International Cryptology Conference, Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
    ERNST D and MARTIN S. The common criteria for information technology security evaluation: Implications for China’s policy on information security standards[R]. East-West Center Working Papers, No. 108, 2010. doi: 10.2139/ssrn.2770146.
    VAN TILBORG H C A and JAJODIA S. Encyclopedia of Cryptography and Security[M]. Boston: Springer, 2011: 468–471. doi: 10.1007/978-1-4419-5906-5.
    CHARI S, RAO J R, and ROHATGI P. Template attacks[C]. The 4th International Workshop on Cryptographic Hardware and Embedded Systems, Redwood Shores, USA, 2002: 13–28. doi: 10.1007/3-540-36400-5_3.
    BRIER E, CLAVIER C, and OLIVIER F. Correlation power analysis with a leakage model[C]. The 6th International Workshop on Cryptographic Hardware and Embedded Systems, Cambridge, USA, 2004: 16–29. doi: 10.1007/978-3-540-28632-5_2.
    BOGDANOV A. Improved side-channel collision attacks on AES[C]. The 14th International Workshop on Selected Areas in Cryptography, Ottawa, Canada, 2007: 84–95. doi: 10.1007/978-3-540-77360-3_6.
    RIVAIN M, PROUFF E, and DOGET J. Higher-order masking and shuffling for software implementations of block ciphers[C]. The 11th International Workshop on Cryptographic Hardware and Embedded Systems, Lausanne, Switzerland, 2009: 171–188. doi: 10.1007/978-3-642-04138-9_13.
    CORON J S and KIZHVATOV I. Analysis and improvement of the random delay countermeasure of CHES 2009[C]. The 12th International Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, USA, 2010: 95–109. doi: 10.1007/978-3-642-15031-9_7.
    黄海, 冯新新, 刘红雨, 等. 基于随机加法链的高级加密标准抗侧信道攻击对策[J]. 电子与信息学报, 2019, 41(2): 348–354. doi: 10.11999/JEIT171211

    HUANG Hai, FENG Xinxin, LIU Hongyu, et al. Random addition-chain based countermeasure against side-channel attack for advanced encryption standard[J]. Journal of Electronics &Information Technology, 2019, 41(2): 348–354. doi: 10.11999/JEIT171211
    LERMAN L, BONTEMPI G, and MARKOWITCH O. Power analysis attack: An approach based on machine learning[J]. International Journal of Applied Cryptography, 2014, 3(2): 97–115. doi: 10.1504/IJACT.2014.062722
    ARCHAMBEAU C, PEETERS E, STANDAERT F X, et al. Template attacks in principal subspaces[C]. The 8th International Workshop on Cryptographic Hardware and Embedded Systems, Yokohama, Japan, 2006: 1–14. doi: 10.1007/11894063_1.
    STANDAERT F X and ARCHAMBEAU C. Using subspace-based template attacks to compare and combine power and electromagnetic information leakages[C]. The 10th International Workshop on Cryptographic Hardware and Embedded Systems, Washington, USA, 2008: 411–425. doi: 10.1007/978-3-540-85053-3_26.
    HETTWER B, GEHRER S, and GÜNEYSU T. Applications of machine learning techniques in side-channel attacks: A survey[J]. Journal of Cryptographic Engineering, 2020(10): 85–95. doi: 10.1007/s13389-019-00212-8
    王燚, 吴震, 蔺冰. 对加掩加密算法的盲掩码模板攻击[J]. 通信学报, 2019, 40(1): 1–14. doi: 10.11959/j.issn.1000-436x.2019007

    WANG Yi, WU Zhen, and LIN Bing. Blind mask template attacks on masked cryptographic algorithm[J]. Journal on Communications, 2019, 40(1): 1–14. doi: 10.11959/j.issn.1000-436x.2019007
    CAGLI E, DUMAS C, and PROUFF E. Convolutional neural networks with data augmentation against jitter-based countermeasures: Profiling attacks without pre-processing[C]. The 19th International Conference on Cryptographic Hardware and Embedded Systems, Taipei, China, 2017: 45–68. doi: 10.1007/978-3-319-66787-4_3.
    ZHOU Yuanyuan and STANDAERT F X. Deep learning mitigates but does not annihilate the need of aligned traces and a generalized ResNet model for side-channel attacks[J]. Journal of Cryptographic Engineering, 2020(10): 135–162. doi: 10.1007/s13389-019-00209-3
    WANG Z. The data of PANDA challeng1[EB/OL]. https://github.com/kistoday/Panda2018/tree/master/challeng1, 2019.
    CRIMINISI A, SHOTTON J, and KONUKOGLU E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning[J]. Foundations and Trends® in Computer Graphics and Vision, 2012, 7(2/3): 81–227. doi: 10.1561/0600000035
    HOMMA N, NAGASHIMA S, IMAI Y, et al. High-resolution side-channel attack using phase-based waveform matching[C]. The 8th International Workshop on Cryptographic Hardware and Embedded Systems - CHES 2006, Yokohama, Japan, 2006: 187–200. doi: 10.1007/11894063_15.
    GUILLEY S, KHALFALLAH K, LOMNE V, et al. Formal framework for the evaluation of waveform resynchronization algorithms[C]. The 5th IFIP WG 11.2 International Workshop on Information Security Theory and Practice. Security and Privacy of Mobile Devices in Wireless Communication, Heraklion, Greece, 2011: 100–115. doi: 10.1007/978-3-642-21040-2_7.
    MATEOS E and GEBOTYS C H. A new correlation frequency analysis of the side channel[C]. The 5th Workshop on Embedded Systems Security, Scottsdale, USA, 2010: 4. doi: 10.1145/1873548.1873552.
    GIERLICHS B, LEMKE-RUST K, and PAAR C. Templates vs. stochastic methods: A performance analysis for side channel cryptanalysis[C]. The 8th International Workshop on Cryptographic Hardware and Embedded Systems, Yokohama, Japan, 2006: 15–29. doi: 10.1007/11894063_2.
    ZHANG Hailong and ZHOU Yongbin. Template attack vs. stochastic model: An empirical study on the performances of profiling attacks in real scenarios[J]. Microprocessors and Microsystems, 2019, 66: 43–54. doi: 10.1016/j.micpro.2019.02.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (2887) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return