Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Hui ZHAO, Tianlong WANG, Yanzhou LIU, Cheng HUANG, Tianqi ZHANG. Decomposition and Dominance Relation Based Many-objective Evolutionary Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1975-1981. doi: 10.11999/JEIT190589
Citation: Hui ZHAO, Tianlong WANG, Yanzhou LIU, Cheng HUANG, Tianqi ZHANG. Decomposition and Dominance Relation Based Many-objective Evolutionary Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1975-1981. doi: 10.11999/JEIT190589

Decomposition and Dominance Relation Based Many-objective Evolutionary Algorithm

doi: 10.11999/JEIT190589
Funds:  The National Natural Science Foundation of China (61671095)
  • Received Date: 2019-08-05
  • Rev Recd Date: 2020-02-13
  • Available Online: 2020-03-25
  • Publish Date: 2020-08-18
  • In recent year, the Many-objective Optimization Problems (MaOPs) have become an increasingly hot research area in evolutionary computation. However, it is still a difficult problem to achieve a good balance between convergence and diversity on solving various kinds of MaOPs. To alleviate this issue mentioned above, a Decomposition and dominance relation based many-objective Evolutionary Algorithm(DdrEA) is proposed in this paper. Firstly, the population is decomposed into numbers of sub-populations by using a set of uniform weight vectors, in which they are optimized in a cooperative manner. Then, the fitness value of solution in each sub-population is calculated by angle dominance relation and angle. Finally, elite selection strategy is performed according to its corresponding fitness value. That is, in each subspace, the solution with the smallest fitness value is selected as the elite solution to enter the next generation. Comparing with several high-dimensional and multi-objective evolutionary algorithms (NSGA-II/AD, RVEA, MOMBI-II), the experimental results show that the performance of the proposed algorithm DdrEA is better than that of the comparison algorithm, and the convergence and diversity of the population can be effectively balanced.

  • loading
  • ZHOU Aimin, QU Boyang, LI Hui, et al. Multiobjective evolutionary algorithms: A survey of the state of the art[J]. Swarm and Evolutionary Computation, 2011, 1(1): 32–49. doi: 10.1016/j.swevo.2011.03.001
    赖文星, 邓忠民, 张鑫杰. 基于多目标优化NSGA2改进算法的结构动力学模型确认[J]. 计算力学学报, 2018, 35(6): 669–674. doi: 10.7511/jslx20170828004

    LAI Wenxing, DENG Zhongmin, and ZHANG Xinjie. Structural dynamics model validation based on NSGA2 improved algorithm[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 669–674. doi: 10.7511/jslx20170828004
    LI Bingdong, LI Jinlong, TANG Ke, et al. Many-objective evolutionary algorithms: A survey[J]. ACM Computing Surveys, 2015, 48(1): 1–35. doi: 10.1145/2792984
    HE Zhenan, YEN G G, and ZHANG Jun. Fuzzy-based Pareto optimality for many-objective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 269–285. doi: 10.1109/TEVC.2013.2258025
    YANG Shengxiang, LI Miqing, LIU Xiaohui, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721–736. doi: 10.1109/TEVC.2012.2227145
    ZHANG Qingfu and LI Hui. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712–731. doi: 10.1109/TEVC.2007.892759
    郑金华, 喻果, 贾月. 基于权重迭代的偏好多目标分解算法解决参考点对算法影响的研究[J]. 电子学报, 2016, 44(1): 67–76. doi: 10.3969/j.issn.0372-2112.2016.01.011

    ZHENG Jinhua, YU Guo, and JIA Yue. Research on MOEA/D based on user-preference and alternate weight to solve the effect of reference point on multi-objective algorithms[J]. Acta Electronica Sinica, 2016, 44(1): 67–76. doi: 10.3969/j.issn.0372-2112.2016.01.011
    BADER J and ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45–76. doi: 10.1162/EVCO_a_00009
    CHENG Ran, JIN Yaochu, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773–791. doi: 10.1109/TEVC.2016.2519378
    LIU Yuan, ZHU Ningbo, LI Kenli, et al. An angle dominance criterion for evolutionary many-objective optimization[J]. Information Sciences, 2020, 509: 376–399. doi: 10.1016/J.INS.2018.12.078
    HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477–506. doi: 10.1109/TEVC.2005.861417
    DEB K, THIELE L, LAUMANNS M, et al. Scalable Test Problems for Evolutionary Multiobjective Optimization[M]. ABRAHAM A, JAIN L, and GOLDBERG R. Evolutionary Multiobjective Optimization. London: Springer, 2005: 105–145. doi: 10.1007/1-84628-137-7_6.
    HERNÁNDEZ GÓMEZ R and COELLO COELLO C A. Improved metaheuristic based on the r2 indicator for many-objective optimization[C]. 2015 Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2015: 679–686. doi: 10.1145/2739480.2754776.
    DEB K. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction[M]. WANG L H, NG A H C, and DEB K. Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing. London: Springer, 2011: 3–34. doi: 10.1007/978-0-85729-652-8_1.
    DEB K and GOYAL M. A combined genetic adaptive search (GeneAS) for engineering design[J]. Journal of Computer Science and Informatics, 1996, 26: 30–45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (3206) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return