Citation: | Ming LIU, Xianhui MENG, Peng XIONG, Xiuling LIU. Detection of Paroxysmal Atrial Fibrillation Based on Kernel Sparse Coding[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1743-1749. doi: 10.11999/JEIT190582 |
Paroxysmal Atrial Fibrillation (PAF) is a kind of accidental arrhythmia, and its high missed detection rate leads to the increase of heart-related diseases. An automatic detection method is proposed based on kernel sparse coding, which can identify PAF attacks based only on short RR interval data. A special geometric structure is presented to analyze the high-dimensional characteristics of the data, and the covariance matrix is calculated as a feature descriptor to find the Riemannian manifold structure contained in the data; Based on the Log-Euclidean framework, a manifold method is used to map the manifold space to a high-dimensional renewable kernel Hilbert space to obtain a more accurate sparse representation to identify quickly PAF. After verification by the Massa-chusetts Institute of Technology-Beth Israel Hospital atrial fibrillation database, the sensitivity is 98.71%, the specificity is 98.43%, and the total accuracy rate is 98.57%. Therefore, this study has a substantial improvement in the detection of transient PAF and shows good potential for clinical monitoring and treatment.
HAQQANI H M, CHAN K H, GREGORY A T, et al. Atrial fibrillation: State of the art in 2017-shifting paradigms in pathogenesis, diagnosis, treatment and prevention[J]. Heart, Lung and Circulation, 2017, 26(9): 867–869. doi: 10.1016/s1443-9506(17)31276-3
|
DE SISTI A, LECLERCQ J F, HALIMI F, et al. Evaluation of time course and predicting factors of progression of paroxysmal or persistent atrial fibrillation to permanent atrial fibrillation[J]. Pacing and Clinical Electrophysiology, 2014, 37(3): 345–355. doi: 10.1111/pace.12264
|
ZHOU Xiaolin, DING Hongxia, UNG B, et al. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy[J]. BioMedical Engineering OnLine, 2014, 13(1): 18. doi: 10.1186/1475-925X-13-18
|
SEPULVEDA-SUESCUN J P, MURILLO-ESCOBAR J, URDA-BENITEZ R D, et al. Atrial Fibrillation Detection Through Heart Rate Variability Using a Machine Learning Approach and Poincare Plot Features[M]. TORRES I, BUSTAMANTE J, and SIERRA D A. VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia. Singapore: Springer Nature Singapore Pte Ltd, 2016: 565–568.
|
ANDERSEN R S, PEIMANKAR A, and PUTHUSSERYPADY S. A deep learning approach for real-time detection of atrial fibrillation[J]. Expert Systems with Applications, 2019, 115: 465–473. doi: 10.1016/j.eswa.2018.08.011
|
季虎, 孙即祥, 王春光. 基于小波变换的自适应QRS-T对消P波检测算法[J]. 电子与信息学报, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117
JI Hu, SUN Jixiang, and WANG Chunguang. An adaptive QRS-T cancellation based on wavelet transform for P-wave detection[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117
|
PETRĖNAS A, SÖRNMO L, LUKOŠEVIČIUS, et al. Detection of occult paroxysmal atrial fibrillation[J]. Medical & Biological Engineering & Computing, 2015, 53(4): 287–297. doi: 10.1007/s11517-014-1234-y
|
CUI Xingran, CHANG E, YANG Wenhuang, et al. Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach[J]. Entropy, 2017, 19(12): 677. doi: 10.3390/e19120677
|
XIN Yi and ZHAO Yizhang. Paroxysmal atrial fibrillation recognition based on multi-scale wavelet α-entropy[J]. BioMedical Engineering OnLine, 2017, 16(1): 121. doi: 10.1186/s12938-017-0406-z
|
TUZEL O, PORIKLI F, and MEER P. Region covariance: A fast descriptor for detection and classification[C]. Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006: 589–600.
|
ZHANG Yingying, YANG Cai, and ZHANG Ping. Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency[J]. Neural Networks, 2017, 89: 84–96. doi: 10.1016/j.neunet.2017.02.012
|
ARSIGNY V, FILLARD P, PENNEC X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2007, 29(1): 328–347. doi: 10.1137/050637996
|
SCHÖLKOPF B and SMOLA A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge, USA: MIT Press, 2018: 13. doi: 10.7551/mitpress/4175.003.0018.
|
LI Peihua, WANG Qilong, ZUO Wangmeng, et al. Log-Euclidean kernels for sparse representation and dictionary learning[C]. 2013 IEEE International Conference on Computer Vision. New York, USA, 2013: 1601–1608. doi: 10.1109/ICCV.2013.202.
|
GOLDBERGER A L, AMARAl L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220. doi: 10.1161/01.CIR.101.23.e215
|
HARANDI M T, SANDERSON C, HARTLEY R, et al. Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 216-229. doi: 10.1007/978-3-642-33709-3_16.
|
HUANG Chao, YE Shuming, CHEN Hang, et al. A novel method for detection of the transition between atrial fibrillation and sinus rhythm[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(4): 1113–1119. doi: 10.1109/TBME.2010.2096506
|
ZHOU Xiaolin, DING Hongxia, WU Wanqing, et al. A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate[J]. PLoS One, 2015, 10(9): e0136544. doi: 10.1371/journal.pone.0136544
|
LIAN Jie, WANG Lian, and MUESSIG D. A simple method to detect atrial fibrillation using RR intervals[J]. The American Journal of Cardiology, 2011, 107(10): 1494–1497. doi: 10.1016/j.amjcard.2011.01.028
|
LEE J, NAM Y, MCMANUS D D, et al. Time-varying coherence function for atrial fibrillation detection[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2783–2793. doi: 10.1109/TBME.2013.2264721
|