Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
Citation: Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580

An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning

doi: 10.11999/JEIT190580
Funds:  The National Natural Science Foundation of China (61873323), The Open Fund Project of State Key Laboratory of Material Processing and Die & Mould Technology (P2018-016), The Natural Science Foundation of Hubei Provincial (2017CFB506), The Open Fund Project of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System (2016znss02A, znxx2018ZD01), The University Student Science and Technology Innovation Fund Project (18ZRA076)
  • Received Date: 2019-07-31
  • Rev Recd Date: 2020-03-18
  • Available Online: 2020-04-11
  • Publish Date: 2020-07-23
  • Considering the shortage of traditional medical ultrasound image despeckle methods, an adaptive multi-exposure fusion framework and feedforward convolutional neural network model image despeckle method is proposed. Firstly, an ultrasound image training data set is produced. Then, a multi-exposure fusion framework with adaptive enhancement factors is proposed to enhance the image for effective feature extraction.Finally, a speckle model is trained through the network and a speckle image is obtained. Experimental results show that, compared with the existing methods, this paper can more effectively remove speckle noise in medical ultrasound images and retain more image details.

  • loading
  • KANAYAMA Y and YANO M. Ultrasound diagnosis apparatus and ultrasound imaging method[P]. USA Patent, 10231710, 2019.
    ZHOU Yingyue, ZANG Hongbin, XU Su, et al. An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model[J]. Biomedical Signal Processing and Control, 2019, 48: 104–117. doi: 10.1016/j.bspc.2018.09.011
    JOEL T and SIVAKUMAR R. An extensive review on Despeckling of medical ultrasound images using various transformation techniques[J]. Applied Acoustics, 2018, 138: 18–27. doi: 10.1016/j.apacoust.2018.03.023
    沈民奋, 陈婷婷, 张琼, 等. 医用超声图像散斑去噪方法综述[J]. 中国医疗器械信息, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003

    SHEN Minfen, CHEN Tingting, ZHANG Qiong, et al. The review of speckle denoising in medical ultrasound imaging[J]. China Medical Device Information, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003
    KUAN D, SAWCHUK A, STRAND T, et al. Adaptive restoration of images with speckle[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 373–383. doi: 10.1109/TASSP.1987.1165131
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
    肖佳, 张俊华, 梅礼晔. 改进的三维块匹配去噪算法[J]. 计算机科学, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043

    XIAO Jia, ZHANG Junhua, and MEI Liye. Improved block-matching 3D denoising algorithm[J]. Computer Science, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043
    PERONA P and MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629–639. doi: 10.1109/34.56205
    YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
    TIAN Jing and CHEN Li. Image despeckling using a non-parametric statistical model of wavelet coefficients[J]. Biomedical Signal Processing and Control, 2011, 6(4): 432–437. doi: 10.1016/j.bspc.2010.11.006
    SENDUR L and SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744–2756. doi: 10.1109/TSP.2002.804091
    BURGER H C, SCHULER C J, and HARMELING S. Image denoising: Can plain neural networks compete with BM3D?[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2392–2399.
    SCHMIDT U and ROTH S. Shrinkage fields for effective image restoration[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2774–2781.
    CHEN Yunjin and POCK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743
    MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. Advances in Neural Information Processing Systems, Red Hook, USA, 2016: 2802–2810.
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    NADEEM M, HUSSAIN A, and MUNIR A. Fuzzy logic based computational model for speckle noise removal in ultrasound images[J]. Multimedia Tools and Applications, 2019, 78(9): 18531–18548.
    吕晓琪, 吴凉, 谷宇, 等. 基于深度卷积神经网络的低剂量CT肺部去噪[J]. 电子与信息学报, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769

    LÜ Xiaoqi, WU Liang, GU Yu, et al. Low dose CT lung denoising model based on deep convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
    YING Zhenqiang, LI Ge, REN Yurui, et al. A new image contrast enhancement algorithm using exposure fusion framework[C]. The 17th International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 2017: 36–46.
    ZHENG D, WANG J, and XIAO Z. Image enhancement based on local standard deviation[J]. Journal of Information and Computational Science, 2005, 2(2): 429–437.
    JIFARA W, JIANG Feng, RHO S, et al. Medical image denoising using convolutional neural network: A residual learning approach[J]. The Journal of Supercomputing, 2019, 75(2): 704–718. doi: 10.1007/s11227-017-2080-0
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014, 1409.1556.
    VEDALDI A and LENC K. MatconvNet: Convolutional neural networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692.
    FU Xiaowei, WANG Yi, CHEN Li, et al. An image despeckling approach using quantum-inspired statistics in dual-tree complex wavelet domain[J]. Biomedical Signal Processing and Control, 2015, 18: 30–35. doi: 10.1016/j.bspc.2014.11.005
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65.
    付晓薇, 代芸, 陈黎, 等. 基于局部熵的量子衍生医学超声图像去斑[J]. 电子与信息学报, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587

    FU Xiaowei, DAI Wei, CHEN Li, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics &Information Technology, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587
    PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A versatile wavelet domain noise filtration technique for medical imaging[J]. IEEE Transactions on Medical Imaging, 2003, 22(3): 323–331. doi: 10.1109/TMI.2003.809588
    RODTOOK A and MAKHANOV S S. Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer[J]. Journal of Visual Communication and Image Representation, 2013, 24(8): 1414–1430. doi: 10.1016/j.jvcir.2013.09.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (3627) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return