Citation: | Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580 |
Considering the shortage of traditional medical ultrasound image despeckle methods, an adaptive multi-exposure fusion framework and feedforward convolutional neural network model image despeckle method is proposed. Firstly, an ultrasound image training data set is produced. Then, a multi-exposure fusion framework with adaptive enhancement factors is proposed to enhance the image for effective feature extraction.Finally, a speckle model is trained through the network and a speckle image is obtained. Experimental results show that, compared with the existing methods, this paper can more effectively remove speckle noise in medical ultrasound images and retain more image details.
KANAYAMA Y and YANO M. Ultrasound diagnosis apparatus and ultrasound imaging method[P]. USA Patent, 10231710, 2019.
|
ZHOU Yingyue, ZANG Hongbin, XU Su, et al. An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model[J]. Biomedical Signal Processing and Control, 2019, 48: 104–117. doi: 10.1016/j.bspc.2018.09.011
|
JOEL T and SIVAKUMAR R. An extensive review on Despeckling of medical ultrasound images using various transformation techniques[J]. Applied Acoustics, 2018, 138: 18–27. doi: 10.1016/j.apacoust.2018.03.023
|
沈民奋, 陈婷婷, 张琼, 等. 医用超声图像散斑去噪方法综述[J]. 中国医疗器械信息, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003
SHEN Minfen, CHEN Tingting, ZHANG Qiong, et al. The review of speckle denoising in medical ultrasound imaging[J]. China Medical Device Information, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003
|
KUAN D, SAWCHUK A, STRAND T, et al. Adaptive restoration of images with speckle[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 373–383. doi: 10.1109/TASSP.1987.1165131
|
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
|
肖佳, 张俊华, 梅礼晔. 改进的三维块匹配去噪算法[J]. 计算机科学, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043
XIAO Jia, ZHANG Junhua, and MEI Liye. Improved block-matching 3D denoising algorithm[J]. Computer Science, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043
|
PERONA P and MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629–639. doi: 10.1109/34.56205
|
YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
|
TIAN Jing and CHEN Li. Image despeckling using a non-parametric statistical model of wavelet coefficients[J]. Biomedical Signal Processing and Control, 2011, 6(4): 432–437. doi: 10.1016/j.bspc.2010.11.006
|
SENDUR L and SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744–2756. doi: 10.1109/TSP.2002.804091
|
BURGER H C, SCHULER C J, and HARMELING S. Image denoising: Can plain neural networks compete with BM3D?[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2392–2399.
|
SCHMIDT U and ROTH S. Shrinkage fields for effective image restoration[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2774–2781.
|
CHEN Yunjin and POCK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743
|
MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. Advances in Neural Information Processing Systems, Red Hook, USA, 2016: 2802–2810.
|
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
|
NADEEM M, HUSSAIN A, and MUNIR A. Fuzzy logic based computational model for speckle noise removal in ultrasound images[J]. Multimedia Tools and Applications, 2019, 78(9): 18531–18548.
|
吕晓琪, 吴凉, 谷宇, 等. 基于深度卷积神经网络的低剂量CT肺部去噪[J]. 电子与信息学报, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
LÜ Xiaoqi, WU Liang, GU Yu, et al. Low dose CT lung denoising model based on deep convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
|
YING Zhenqiang, LI Ge, REN Yurui, et al. A new image contrast enhancement algorithm using exposure fusion framework[C]. The 17th International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 2017: 36–46.
|
ZHENG D, WANG J, and XIAO Z. Image enhancement based on local standard deviation[J]. Journal of Information and Computational Science, 2005, 2(2): 429–437.
|
JIFARA W, JIANG Feng, RHO S, et al. Medical image denoising using convolutional neural network: A residual learning approach[J]. The Journal of Supercomputing, 2019, 75(2): 704–718. doi: 10.1007/s11227-017-2080-0
|
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014, 1409.1556.
|
VEDALDI A and LENC K. MatconvNet: Convolutional neural networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692.
|
FU Xiaowei, WANG Yi, CHEN Li, et al. An image despeckling approach using quantum-inspired statistics in dual-tree complex wavelet domain[J]. Biomedical Signal Processing and Control, 2015, 18: 30–35. doi: 10.1016/j.bspc.2014.11.005
|
BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65.
|
付晓薇, 代芸, 陈黎, 等. 基于局部熵的量子衍生医学超声图像去斑[J]. 电子与信息学报, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587
FU Xiaowei, DAI Wei, CHEN Li, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics &Information Technology, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587
|
PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A versatile wavelet domain noise filtration technique for medical imaging[J]. IEEE Transactions on Medical Imaging, 2003, 22(3): 323–331. doi: 10.1109/TMI.2003.809588
|
RODTOOK A and MAKHANOV S S. Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer[J]. Journal of Visual Communication and Image Representation, 2013, 24(8): 1414–1430. doi: 10.1016/j.jvcir.2013.09.009
|