Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Haibo ZHANG, Yan CHENG, Kaijian LIU, Xiaofan HE. The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1444-1451. doi: 10.11999/JEIT190571
Citation: Haibo ZHANG, Yan CHENG, Kaijian LIU, Xiaofan HE. The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1444-1451. doi: 10.11999/JEIT190571

The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks

doi: 10.11999/JEIT190571
Funds:  The National Natural Science Foundation of China (61801065, 61601071), The Program for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The General Project on Foundation and Cutting-edge Research Plan of Chongqing (cstc2018jcyjAX0463)
  • Received Date: 2019-07-29
  • Rev Recd Date: 2020-02-21
  • Available Online: 2020-03-20
  • Publish Date: 2020-06-22
  • Due to the popularity of vehicle applications and the increase of the number of vehicles, the physical resources of roadside infrastructure are limited. When a large number of vehicles are connected to the vehicle networks, the energy consumption and latency are simultaneously increased. The framework for integrating the Content Delivery Network (CDN) and Mobile Edge Computing (MEC) can reduce the latency and energy consumption. In vehicle network, vehicle mobility poses a major challenge to the continuity of cloud services. Therefore, Mobility Management (MM) is proposed to deal with this problem. The Dynamic Channel Allocation algorithm with Overhead selection (ODCA) is used to avoid  the ping-pong effect and reduces the handover time of vehicles between cells. The cooperative game algorithm based on RoadSide Unit (RSU) is used for virtual machine migration and a learning-based price control mechanism is developed to process vehicular computation resources efficiently. The simulation results show that the proposed algorithm can improve resource utilization and reduce overhead compared with the existing algorithms.

  • loading
  • ZHOU Siyu, NETALKAR P P, CHANG Yanan, et al. The MEC-based architecture design for low-latency and fast hand-off vehicular networking[C]. The 88th Vehicular Technology Conference, Chicago, USA, 2018: 1–7. doi: 10.1109/VTCFall.2018.8690790.
    BASTUG E, BENNIS M, MEDARD M, et al. Toward interconnected virtual reality: Opportunities, challenges, and enablers[J]. IEEE Communications Magazine, 2017, 55(6): 110–117. doi: 10.1109/MCOM.2017.1601089
    LIN Mengdan and ZHAO Xuelin. Application research of neural network in vehicle target recognition and classification[C]. 2019 International Conference on Intelligent Transportation, Big Data & Smart City, Changsha, China, 2019: 5–8. doi: 10.1109/ICITBS.2019.00010.
    CICIRELLI F, GUERRIERI A, SPEZZANO G, et al. Edge computing and social internet of things for large-scale smart environments development[J]. IEEE Internet of Things Journal, 2018, 5(4): 2557–2571. doi: 10.1109/JIOT.2017.2775739
    YALA L, FRANGOUDIS P A, and KSENTINI A. QoE-aware computing resource allocation for CDN-as-a-service provision[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7842182.
    LIU Jiayi, YANG Qinghai, and SIMON G. Congestion avoidance and load balancing in content placement and request redirection for mobile CDN[J]. IEEE/ACM Transactions on Networking, 2018, 26(2): 851–863. doi: 10.1109/TNET.2018.2804979
    XU Jie, SUN Yuxuan, CHEN Lixing, et al. E2M2: Energy efficient mobility management in dense small cells with mobile edge computing[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7996855.
    PENG Han, RAZI A, AFGHAH F, et al. A unified framework for joint mobility prediction and object profiling of drones in UAV networks[J]. Journal of Communications and Networks, 2018, 20(5): 434–442. doi: 10.1109/JCN.2018.000068
    LIU Fangming, SHU Peng, and LUI J C S. AppATP: An energy conserving adaptive mobile-cloud transmission protocol[J]. IEEE Transactions on Computers, 2015, 64(11): 3051–3063. doi: 10.1109/TC.2015.2401032
    XU Fei, LIU Fangming, LIU Linghui, et al. iAware: Making live migration of virtual machines interference-aware in the cloud[J]. IEEE Transactions on Computers, 2014, 63(12): 3012–3025. doi: 10.1109/TC.2013.185
    CHEN Hongyang, WU Jianming, and SHIMOMURA T. New reference signal design for URLLC and eMBB multiplexing in new radio wireless communications[C]. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1220–1225. doi: 10.1109/PIMRC.2018.8580882.
    KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi: 10.1109/ACCESS.2019.2892180
    WANG Chenmeng, YU F R, LIANG Chengchao, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432–7445. doi: 10.1109/TVT.2017.2672701
    JOSHI G, VIG R, and SINGH S. DCA-based unimodal feature-level fusion of orthogonal moments for Indian sign language dataset[J]. IET Computer Vision, 2018, 12(5): 570–577. doi: 10.1049/iet-cvi.2017.0394
    SUN Yuxuan, ZHOU Sheng, and XU Jie. EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2637–2646. doi: 10.1109/JSAC.2017.2760160
    PLACHY J, BECVAR Z, and STRINATI E C. Dynamic resource allocation exploiting mobility prediction in mobile edge computing[C]. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794955.
    CHEN Xiaojing, NI Wei, COLLINGS I B, et al. Automated function placement and online optimization of network functions virtualization[J]. IEEE Transactions on Communications, 2019, 67(2): 1225–1237. doi: 10.1109/TCOMM.2018.2877336
    FRANGOUDIS P A and KSENTINI A. Service migration versus service replication in Multi-access Edge Computing[C]. 2018 14th International Wireless Communications & Mobile Computing Conference, Limassol, Cyprus, 2018: 124–129. doi: 10.1109/IWCMC.2018.8450284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (3989) PDF downloads(213) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return