Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Peng WANG, Mengyu SUN, Haiyan WANG, Xiaoyan LI, Zhigang LÜ. An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1950-1958. doi: 10.11999/JEIT190569
Citation: Peng WANG, Mengyu SUN, Haiyan WANG, Xiaoyan LI, Zhigang LÜ. An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1950-1958. doi: 10.11999/JEIT190569

An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation

doi: 10.11999/JEIT190569
Funds:  The National Natural Science Foundation of China (61271362),The National Key Research and Development Project (2016YFC1400200), The Key Science and Technology Program of Shaanxi Province (2019GY-022, 2019GY-066), Weiyang District of Xi’an 2019 Science and Technology Program (201923)
  • Received Date: 2019-07-29
  • Rev Recd Date: 2020-03-25
  • Available Online: 2020-04-03
  • Publish Date: 2020-08-18
  • In order to solve the problems of lower precision of target location in short-term occlusion and inaccurate of scale estimation of target in rotation by Spatial-Temporal Regularized Correlation Filters (STRCF), an object tracking algorithm with channel reliability and target response adaptation is proposed in this paper. In this algorithm, target response regularization is added to train target model. By updating the ideal target response function in the process of solving model, the target can be tracked again after being occluded for a short time. The reliability of each feature channel is evaluated by coefficient of channel reliability, which can improves the model's expression of the target. Scale filters can be trained in log-polar coordinates to improve the accuracy of scale estimation when target is rotating. The experimental results show that the proposed algorithm reduces 28.54 pixels in the average center position error and improves the average overlap rate by 22.8% compared with STRCF.

  • loading
  • 王旭东, 王屹炜, 闫贺. 背景抑制直方图模型的连续自适应均值漂移跟踪算法[J]. 电子与信息学报, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588

    WANG Xudong, WANG Yiwei, and YAN He. Continuously adaptive mean-shift tracking algorithm with suppressed background histogram model[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588
    黄立勤, 朱飘. 车载视频下改进的核相关滤波跟踪算法[J]. 电子与信息学报, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109

    HUANG Liqin and ZHU Piao. Improved kernel correlation filtering tracking for vehicle video[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109
    LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 254–265. doi: 10.1007/978-3-319-16181-5_18.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097. doi: 10.1109/CVPR.2014.143.
    DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/iccv.2015.490.
    BIBI A, MUELLER M, and GHANEM B. Target response adaptation for correlation filter tracking[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 419–433. doi: 10.1007/978-3-319-46466-4_25.
    WANG Ning, ZHOU Wengang, TIAN Qi, et al. Multi-cue correlation filters for robust visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4844–4853.doi: 10.1109/CVPR.2018.00509.
    TANG Ming, YU Bin, ZHANG Fan, et al. High-speed tracking with multi-kernel correlation filters[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4874–4833. doi: 10.1109/CVPR.2018.00512.
    CHOI J, CHANG H J, FISCHER T, et al. Context-aware deep feature compression for high-speed visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 479–488. doi: 10.1109/CVPR.2018.00057.
    LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515.
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/cvpr.2010.5539960.
    LUKEŽIČ A, VOJÍŘ T, ZAJC L C, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126(7): 671–688. doi: 10.1007/s11263-017-1061-3
    LI Yang, ZHU Jianke, HOI S C H, et al. Robust estimation of similarity transformation for visual object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8666–8673. doi: 10.1609/aaai.v33i01.33018666
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (3628) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return