Citation: | Huilin ZHOU, Tao OUYANG, Jian LIU. Stochastic Average Gradient Descent Contrast Source Inversion Based Nonlinear Inverse Scattering Method for Complex Objects Reconstruction[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2053-2058. doi: 10.11999/JEIT190566 |
When using the nonlinear Contrast Source Inversion (CSI) algorithm to solve the electromagnetic inverse scattering problem, each iteration involves finding the differential of the dissolution radiation field data about the contrast source and the total field, i.e., the Jacobi matrix. the solution of the matrix leads to the problem of large computational cost and slow convergence speed of the algorithm. in this paper, a Contrast Source Inversion algorithm based on Stochastic Average Gradient descent (SAG-CSI) is used instead of the original full gradient alternating Conjugate Gradient algorithm to reconstruct the spatial distribution information of the dielectric constant of the dielectric target under the CSI framework. the method only needs to calculate the gradient information of the randomly selected part of the measurement data in the objective function in each iteration, while the objective function keeps the gradient information of the unscented measurement data, and the optimal value of the objective function is solved together with the above two parts of the gradient information. The simulation results show that the proposed method reduces the computational cost and improves the convergence speed of the algorithm when compared with the traditional CSI method.
LI Lianlin, WANG Longgang, DING Jun, et al. A probabilistic model for the nonlinear electromagnetic inverse scattering: TM case[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5984–5991. doi: 10.1109/TAP.2017.2751654
|
KIM S B, VAN ZYL J J, JOHNSON J T, et al. Surface soil moisture retrieval using the l-band synthetic aperture radar onboard the Soil Moisture Active-Passive satellite and evaluation at core validation sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1897–1914. doi: 10.1109/TGRS.2016.2631126
|
WANG Longgang, Li Lianlin, DING Jun, et al. A fast patches-based imaging algorithm for 3-D multistatic imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 941–945. doi: 10.1109/LGRS.2017.2688461
|
VAN DEN BERG P M and KLEINMAN R E. A contrast source inversion method[J]. Inverse Problems, 1997, 13(6): 1607. doi: 10.1088/0266-5611/13/6/013
|
POLI L, OLIVERI G, and MASSA A. Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2865–2879. doi: 10.1109/TAP.2012.2194676
|
SHEA J D, VAN VEEN B D, and HAGNESS S C. A TSVD analysis of microwave inverse scattering for breast imaging[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(4): 936–945. doi: 10.1109/TBME.2011.2176727
|
OLIVERI G, ANSELMI N, and MASSA A. Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5157–5170. doi: 10.1109/TAP.2014.2344673
|
BEVACQUA M T, CROCCO L, DI DONATO L, et al. Non-linear inverse scattering via sparsity regularized contrast source inversion[J]. IEEE Transactions on Computational Imaging, 2017, 3(2): 296–304. doi: 10.1109/TCI.2017.2675708
|
CHEN Xudong. Subspace-based optimization method for solving inverse-scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 42–49. doi: 10.1109/TGRS.2009.2025122
|
周辉林, 郑灵辉, 莫仲念, 等. 基于直接采样法和子空间优化法的多介质目标混合逆散射成像方法[J]. 电子与信息学报, 2017, 39(3): 758–762. doi: 10.11999/JEIT160534
ZHOU Huilin, ZHENG Linghui, MO Zhongnian, et al. DSM-SOM based hybrid inverse scattering method for multiple dielectric objects reconstruction[J]. Journal of Electronics &Information Technology, 2017, 39(3): 758–762. doi: 10.11999/JEIT160534
|
SONG Xiaoqian, LI Maokun, YANG Fan, et al. Feasibility study of acoustic imaging for human thorax using an acoustic contrast source inversion algorithm[J]. The Journal of the Acoustical Society of America, 2018, 144(5): 2782–2792. doi: 10.1121/1.5078590
|
GUO Lei and ABBOSH A M. Microwave imaging of nonsparse domains using Born iterative method with wavelet transform and block sparse Bayesian learning[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4877–4888. doi: 10.1109/TAP.2015.2473000
|
YE Xiuzhu and CHEN Xudong. Subspace-based distorted-Born iterative method for solving inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7224–7232. doi: 10.1109/TAP.2017.2766658
|
ABUBAKAR A, VAN DEN BERG P M, and KOOIJ B J. A conjugate gradient contrast source technique for 3D profile inversion[J]. IEICE Transactions on Electronics, 2000, E83-C(12): 1864–1874.
|
SCHMIDT M, LE ROUX N, and BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2): 83–112. doi: 10.1007/s10107-016-1030-6
|
DOGNIN P and GOEL V. Combining stochastic average gradient and hessian-free optimization for sequence training of deep neural networks[C]. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Olomouc: IEEE, 2013: 321–325.
|