Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Daoguang DONG, Guosheng RUI, Wenbiao TIAN. Research on the Dynamic Sparse Bayesian Recovery of Multi-task Observed Streaming Signals in Time Domain[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1758-1765. doi: 10.11999/JEIT190558
Citation: Daoguang DONG, Guosheng RUI, Wenbiao TIAN. Research on the Dynamic Sparse Bayesian Recovery of Multi-task Observed Streaming Signals in Time Domain[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1758-1765. doi: 10.11999/JEIT190558

Research on the Dynamic Sparse Bayesian Recovery of Multi-task Observed Streaming Signals in Time Domain

doi: 10.11999/JEIT190558
Funds:  The National Natural Science of China (41606117, 41476089, 61671016)
  • Received Date: 2019-07-25
  • Rev Recd Date: 2020-03-26
  • Available Online: 2020-04-24
  • Publish Date: 2020-07-23
  • To eliminate the blocking effects in the dynamic recovery of the streaming signals observed from multiple tasks in time domain, a streaming multi-task sparse Bayesian learning based algorithm and its robust enhanced version are proposed in this paper, where the former extends Lapped Orthogonal Transform (LOT) sliding window in time domain to multi-task condition, and decouples the estimation of unknown noise accuracy from signal reconstruction by Bayesian probability modeling and omits it, the latter further introduces the measurement of reconstructed uncertainty, which improves the robustness of the algorithm and the ability to suppress the accumulation of errors. Experimental results based on measured meteorological data shows that the proposed algorithms have significantly higher reconstruction accuracy, success rate and running speed than the representative algorithms in the field of compressed sensing from multiple measurement vectors, namely, the Temporal Multiple Sparse Bayesian Learning (TMSBL) algorithm and the Multi-Task-Compressed Sensing (MT-CS) algorithm, under different conditions of Signal-to-Noise Ratios, number of observations and tasks.

  • loading
  • LEINONEN M, CODREANU M, and JUNTTI M. Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1622–1635. doi: 10.1109/TWC.2014.2371017
    ASIF M S and ROMBERG J. Sparse recovery of streaming signals using 1-homotopy[J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4209–4223. doi: 10.1109/TSP.2014.2328981
    周超杰, 张杰, 杨俊钢, 等. 基于ROMS模式的南海SST与SSH四维变分同化研究[J]. 海洋学报, 2019, 41(1): 32–40. doi: 10.3969/j.issn.0253-4193.2019.01.005

    ZHOU Chaojie, ZHANG Jie, YANG Jungang, et al. 4DVAR assimilation of SST and SSH data in South China Sea based on ROMS[J]. Acta Oceanologica Sinica, 2019, 41(1): 32–40. doi: 10.3969/j.issn.0253-4193.2019.01.005
    ZHANG Yonggang, ZHANG Jianxue, JIAO Lin, et al. Algorithms of wave reflective critical angle on interface[C]. SPIE 10250, International Conference on Optical and Photonics Engineering, Chengdu, China, 2017: 8–13. doi: 10.1117/12.2266713.
    AO Dongyang, WANG Rui, HU Cheng, et al. A sparse SAR imaging method based on multiple measurement vectors model[J]. Remote Sensing, 2017, 9(3): 297. doi: 10.3390/rs9030297
    TIPPING M E and FAUL A. Fast marginal likelihood maximisation for sparse Bayesian models[C]. The 9th International Workshop on Artificial Intelligence and Statistics, Key West, USA, 2003: 3–6.
    WIPF D P and RAO B D. An empirical bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/tsp.2007.894265
    ZHANG Zhilin and RAO B D. Sparse signal recovery in the presence of correlated multiple measurement vectors[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 3986–3989. doi: 10.1109/ICASSP.2010.5495780.
    ZHANG Zhilin and RAO B D. Iterative reweighted algorithms for sparse signal recovery with temporally correlated source vectors[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 3932–3935. doi: 10.1109/ICASSP.2011.5947212.
    ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912–926. doi: 10.1109/JSTSP.2011.2159773
    JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 92–106. doi: 10.1109/tsp.2008.2005866
    ZHANG Zhilin and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009–2015. doi: 10.1109/TSP.2013.2241055
    BERNAL E A and LI Qun. Tensorial compressive sensing of jointly sparse matrices with applications to color imaging[C]. 2017 IEEE International Conference on Image Processing, Beijing, China, 2018: 2781–2785. doi: 10.1109/ICIP.2017.8296789.
    HAN Ningning and SONG Zhanjie. Bayesian multiple measurement vector problem with spatial structured sparsity patterns[J]. Digital Signal Processing, 2018, 75: 184–201. doi: 10.1016/j.dsp.2018.01.015
    QIN Yanhua, LIU Yumin, and YU Zhongyuan. Underdetermined DOA estimation using coprime array via multiple measurement sparse Bayesian learning[J]. Signal, Image and Video Processing, 2019, 13(7): 1311–1318. doi: 10.1007/s11760-019-01480-x
    DU Yang, DONG Binhong, ZHU Wuyong, et al. Joint channel estimation and multiuser detection for uplink Grant-Free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(4): 682–685. doi: 10.1109/LWC.2018.2810278
    SHAHIN S, SHAYEGH F, MORTAHEB S, et al. Improvement of flexible design matrix in sparse Bayesian learning for multi task fMRI data analysis[C]. The 23rd Iranian Conference on Biomedical Engineering and 20161st International Iranian Conference on Biomedical Engineering, Tehran, Iran, 2017: 3823–3826. doi: 10.1109/ICBME.2016.7890927.
    FENG Weike, GUO Yiduo, ZHANG Yongshun, et al. Airborne radar space time adaptive processing based on atomic norm minimization[J]. Signal Processing, 2018, 148: 31–40. doi: 10.1016/j.sigpro.2018.02.008
    WU Jingjing, LI Siwei, ZHANG Saiwen, et al. Fast analysis method for stochastic optical reconstruction microscopy using multiple measurement vector model sparse Bayesian learning[J]. Optics Letters, 2018, 43(16): 3977–3980. doi: 10.1364/OL.43.003977
    WIJEWARDHANA U L and CODREANU M. A Bayesian approach for online recovery of streaming signals from compressive measurements[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 184–199. doi: 10.1109/TSP.2016.2614489
    MALVAR H S and STAELIN D H. The LOT: Transform coding without blocking effects[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(4): 553–559. doi: 10.1109/29.17536
    BABIN S M, YOUNG G S, and CARTON J A. A new model of the oceanic evaporation duct[J]. Journal of Applied Meteorology, 1997, 36(3): 193–204. doi: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2854) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return