Citation: | Daoguang DONG, Guosheng RUI, Wenbiao TIAN. Research on the Dynamic Sparse Bayesian Recovery of Multi-task Observed Streaming Signals in Time Domain[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1758-1765. doi: 10.11999/JEIT190558 |
To eliminate the blocking effects in the dynamic recovery of the streaming signals observed from multiple tasks in time domain, a streaming multi-task sparse Bayesian learning based algorithm and its robust enhanced version are proposed in this paper, where the former extends Lapped Orthogonal Transform (LOT) sliding window in time domain to multi-task condition, and decouples the estimation of unknown noise accuracy from signal reconstruction by Bayesian probability modeling and omits it, the latter further introduces the measurement of reconstructed uncertainty, which improves the robustness of the algorithm and the ability to suppress the accumulation of errors. Experimental results based on measured meteorological data shows that the proposed algorithms have significantly higher reconstruction accuracy, success rate and running speed than the representative algorithms in the field of compressed sensing from multiple measurement vectors, namely, the Temporal Multiple Sparse Bayesian Learning (TMSBL) algorithm and the Multi-Task-Compressed Sensing (MT-CS) algorithm, under different conditions of Signal-to-Noise Ratios, number of observations and tasks.
LEINONEN M, CODREANU M, and JUNTTI M. Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1622–1635. doi: 10.1109/TWC.2014.2371017
|
ASIF M S and ROMBERG J. Sparse recovery of streaming signals using ℓ1-homotopy[J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4209–4223. doi: 10.1109/TSP.2014.2328981
|
周超杰, 张杰, 杨俊钢, 等. 基于ROMS模式的南海SST与SSH四维变分同化研究[J]. 海洋学报, 2019, 41(1): 32–40. doi: 10.3969/j.issn.0253-4193.2019.01.005
ZHOU Chaojie, ZHANG Jie, YANG Jungang, et al. 4DVAR assimilation of SST and SSH data in South China Sea based on ROMS[J]. Acta Oceanologica Sinica, 2019, 41(1): 32–40. doi: 10.3969/j.issn.0253-4193.2019.01.005
|
ZHANG Yonggang, ZHANG Jianxue, JIAO Lin, et al. Algorithms of wave reflective critical angle on interface[C]. SPIE 10250, International Conference on Optical and Photonics Engineering, Chengdu, China, 2017: 8–13. doi: 10.1117/12.2266713.
|
AO Dongyang, WANG Rui, HU Cheng, et al. A sparse SAR imaging method based on multiple measurement vectors model[J]. Remote Sensing, 2017, 9(3): 297. doi: 10.3390/rs9030297
|
TIPPING M E and FAUL A. Fast marginal likelihood maximisation for sparse Bayesian models[C]. The 9th International Workshop on Artificial Intelligence and Statistics, Key West, USA, 2003: 3–6.
|
WIPF D P and RAO B D. An empirical bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/tsp.2007.894265
|
ZHANG Zhilin and RAO B D. Sparse signal recovery in the presence of correlated multiple measurement vectors[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 3986–3989. doi: 10.1109/ICASSP.2010.5495780.
|
ZHANG Zhilin and RAO B D. Iterative reweighted algorithms for sparse signal recovery with temporally correlated source vectors[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 3932–3935. doi: 10.1109/ICASSP.2011.5947212.
|
ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912–926. doi: 10.1109/JSTSP.2011.2159773
|
JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 92–106. doi: 10.1109/tsp.2008.2005866
|
ZHANG Zhilin and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009–2015. doi: 10.1109/TSP.2013.2241055
|
BERNAL E A and LI Qun. Tensorial compressive sensing of jointly sparse matrices with applications to color imaging[C]. 2017 IEEE International Conference on Image Processing, Beijing, China, 2018: 2781–2785. doi: 10.1109/ICIP.2017.8296789.
|
HAN Ningning and SONG Zhanjie. Bayesian multiple measurement vector problem with spatial structured sparsity patterns[J]. Digital Signal Processing, 2018, 75: 184–201. doi: 10.1016/j.dsp.2018.01.015
|
QIN Yanhua, LIU Yumin, and YU Zhongyuan. Underdetermined DOA estimation using coprime array via multiple measurement sparse Bayesian learning[J]. Signal, Image and Video Processing, 2019, 13(7): 1311–1318. doi: 10.1007/s11760-019-01480-x
|
DU Yang, DONG Binhong, ZHU Wuyong, et al. Joint channel estimation and multiuser detection for uplink Grant-Free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(4): 682–685. doi: 10.1109/LWC.2018.2810278
|
SHAHIN S, SHAYEGH F, MORTAHEB S, et al. Improvement of flexible design matrix in sparse Bayesian learning for multi task fMRI data analysis[C]. The 23rd Iranian Conference on Biomedical Engineering and 20161st International Iranian Conference on Biomedical Engineering, Tehran, Iran, 2017: 3823–3826. doi: 10.1109/ICBME.2016.7890927.
|
FENG Weike, GUO Yiduo, ZHANG Yongshun, et al. Airborne radar space time adaptive processing based on atomic norm minimization[J]. Signal Processing, 2018, 148: 31–40. doi: 10.1016/j.sigpro.2018.02.008
|
WU Jingjing, LI Siwei, ZHANG Saiwen, et al. Fast analysis method for stochastic optical reconstruction microscopy using multiple measurement vector model sparse Bayesian learning[J]. Optics Letters, 2018, 43(16): 3977–3980. doi: 10.1364/OL.43.003977
|
WIJEWARDHANA U L and CODREANU M. A Bayesian approach for online recovery of streaming signals from compressive measurements[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 184–199. doi: 10.1109/TSP.2016.2614489
|
MALVAR H S and STAELIN D H. The LOT: Transform coding without blocking effects[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(4): 553–559. doi: 10.1109/29.17536
|
BABIN S M, YOUNG G S, and CARTON J A. A new model of the oceanic evaporation duct[J]. Journal of Applied Meteorology, 1997, 36(3): 193–204. doi: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2
|