Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Yunlong GAO, Zhihao WANG, Jinyan PAN, Sizhe LUO, Dexin WANG. Robust Fuzzy C-Means Based on Adaptive Relaxation[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1774-1781. doi: 10.11999/JEIT190556
Citation: Yunlong GAO, Zhihao WANG, Jinyan PAN, Sizhe LUO, Dexin WANG. Robust Fuzzy C-Means Based on Adaptive Relaxation[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1774-1781. doi: 10.11999/JEIT190556

Robust Fuzzy C-Means Based on Adaptive Relaxation

doi: 10.11999/JEIT190556
Funds:  The National Natural Science Foundation of China (61203176), The Provincial Natural Science Foundation of Fujian Province (2013J05098, 2016J01756)
  • Received Date: 2019-07-24
  • Rev Recd Date: 2020-03-13
  • Available Online: 2020-04-09
  • Publish Date: 2020-07-23
  • Noise is one of the most important influences for clustering. Existing fuzzy clustering methods try to reduce the impact of noise by relaxing the constraint condition of membership. But there are still two basic problems to be solved. The first is how to evaluate the probability that a sample point is a noise. The second is how to retain the effect of normal points while suppressing the impact of noise. To solve these two problems, Robust Fuzzy C-Means based on Adaptive Relaxation (AR-RFCM) is proposed. The new model estimates the reliability of sample points by the method of the K-Nearest Neighbor (KNN). It adjusts adaptively the relaxation parameters to reduce the impact of noise, and keeps the effect of reliable sample points at the same time. In addition, AR-RFCM utilizes the sparsity of membership in K-means to improve the effect of reliable sample points. Therefore, the compactness of clusters is improved and the impact of noise is suppressed. Experiments demonstrate that AR-RFCM has a good robustness for noise, and also achieves higher rand index in all 25 UCI data sets, even averagely higher than FCM 7.7864%.

  • loading
  • JAIN A K. Data clustering: 50 years beyond k-means[J]. Pattern Recognition Letters, 2010, 31(8): 651–666. doi: 10.1016/j.patrec.2009.09.011
    DENG Zhaohong, JIANG Yizhang, CHUNG Fulai, et al. Transfer prototype-based fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(5): 1210–1232. doi: 10.1109/TFUZZ.2015.2505330
    张洁玉, 李佐勇. 基于核空间的加权邻域约束直觉模糊聚类算法[J]. 电子与信息学报, 2017, 39(9): 2162–2168. doi: 10.11999/JEIT161317

    ZHANG Jieyu and LI Zuoyong. Kernel-based algorithm with weighted spatial information intuitionistic fuzzy c-means[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2162–2168. doi: 10.11999/JEIT161317
    LV Yinghua, MA Tinghuai, TANG Meili, et al. An efficient and scalable density-based clustering algorithm for datasets with complex structures[J]. Neurocomputing, 2016, 171: 9–22. doi: 10.1016/j.neucom.2015.05.109
    QIN Xiaoyu, TING Kaiming, ZHU Ye, et al. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 4755–4762. doi: 10.1609/aaai.v33i01.33014755.
    赵小强, 刘晓丽. 基于公理化模糊子集的改进谱聚类算法[J]. 电子与信息学报, 2018, 40(8): 1904–1910. doi: 10.11999/IEIT170904

    ZHAO Xiaoqiang and LIU Xiaoli. An improved spectral clustering algorithm based on axiomatic fuzzy set[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1904–1910. doi: 10.11999/IEIT170904
    YIN Hao, BENSON A R, LESKOVEC J, et al. Local higher-order graph clustering[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 555–564. doi: 10.1145/3097983.3098069.
    MOSLEHI Z, TAHERI M, MIRZAEI A, et al. Discriminative fuzzy c-means as a large margin unsupervised metric learning algorithm[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(6): 3534–3544. doi: 10.1109/TFUZZ.2018.2836338
    刘解放, 王士同, 王骏, 等. 一种具有最优保证特性的贝叶斯可能性聚类方法[J]. 电子与信息学报, 2017, 39(7): 1554–1562. doi: 10.11999/JEIT160908

    LIU Jiefang, WANG Shitong, WANG Jun, et al. Bayesian possibilistic clustering method with optimality guarantees[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1554–1562. doi: 10.11999/JEIT160908
    MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]. The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1965: 281–297.
    BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191–203.
    DE OLIVEIRA J V and PEDRYCZ W. Advances in Fuzzy Clustering and its Applications[M]. Chichester: John Wiley & Sons, Ltd., 2007. doi: 10.1002/9780470061190.
    DAVE R N. Characterization and detection of noise in clustering[J]. Pattern Recognition, 1991, 12(11): 657–664. doi: 10.1016/0167-8655(91)90002-4
    KRISHNAPURAM R and KELLER J M. A possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98–110. doi: 10.1109/91.227387
    ZARINBAL M, ZARANDI M H F, and TURKSEN I B. Relative entropy fuzzy c-means clustering[J]. Information Sciences, 2014, 260: 74–97. doi: 10.1016/j.ins.2013.11.004
    GU Jing, JIAO Licheng, YANG Shuyuan, et al. Fuzzy double c-means clustering based on sparse self-representation[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 612–626. doi: 10.1109/TFUZZ.2017.2686804
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (2847) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return