Advanced Search
Volume 42 Issue 5
Jun.  2020
Turn off MathJax
Article Contents
Genhua CHEN, Baixiao CHEN. Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
Citation: Genhua CHEN, Baixiao CHEN. Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554

Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar

doi: 10.11999/JEIT190554
Funds:  The National Natural Science Foundation of China(61401187), The Science Research of Jiangxi Provincial Department of Education(GJJ170990)
  • Received Date: 2019-07-24
  • Rev Recd Date: 2020-02-24
  • Available Online: 2020-03-21
  • Publish Date: 2020-06-04
  • A robust spatial sign transform-based maximum likelihood method for low-elevation target altitude measurement is proposed in the presence of the non-Gaussian diffuse multipath component for Very High Frequency (VHF) radar. The spatial sign transform is implemented to the antenna array snapshots, reducing the influence of the outliers on array covariance matrix and the low elevation estimation algorithms, followed by computing the spatial Sign Covariance Matrix(SCM). Then the application of SCM to the Maximum Likelihood method(SCM-ML) is presented on the basis of the affine equivalence and preservation of the eigenstructure for robust low elevation estimation and height finding of VHF radar. The proposed method effectively solves the non-Gaussian property of the diffuse multipath component and improves the robustness of low elevation estimation. Simulation result and real data demonstrate the robustness and validation of the SCM-ML method.

  • loading
  • BALAJTI I, KENDE G, and SINNER E. Increased importance of VHF radars in ground-based air defense[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(1): 4–18. doi: 10.1109/MAES.2012.6145436
    郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013

    ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013
    LI Cunxu, CHEN Baixiao, ZHENG Yisong, et al. Altitude measurement of low elevation target in complex terrain based on orthogonal matching pursuit[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 745–751. doi: 10.1049/iet-rsn.2016.0468
    BARTON D K. Radar Equations for Modern Radar[M]. Boston: Artech House, 2012: 80–82.
    EZUMA M, OZDEMIR O, ANJINAPPA C K, et al. Micro-UAV detection with a low-grazing angle Millimeter wave radar[C]. 2019 IEEE Radio and Wireless Symposium, Orlando, USA, 2019: 1–4. doi: 10.1109/RWS.2019.8714203.
    RAYMAEKERS J and ROUSSEEUW P. A generalized spatial sign covariance matrix[J]. Journal of Multivariate Analysis, 2019, 171: 94–111. doi: 10.1016/j.jmva.2018.11.010
    HAYKIN S. Adaptive Radar Signal Processing[M]. Hoboken: Wiley & Sons, 2006: 1–60.
    BILLINGSLEY J B. Low-angle Radar Land Clutter: Measurements and Empirical Models[M]. Norwich, NY: William Andrew Publishing, 2002: 300–350.
    SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675
    AUGUIN N, MORALES-JIMENEZ D, MCKAY M R, et al. Large-dimensional behavior of regularized Maronna’s M-estimators of covariance matrices[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3259–3272. doi: 10.1109/TSP.2018.2831629
    LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131
    VISURI S, OJA H, and KOIVUNEN V. Subspace-based direction-of-arrival estimation using nonparametric statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 2060–2073. doi: 10.1109/78.942634
    KOZICK R J and SADLER B M. Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures[J]. IEEE Transactions on Signal Processing, 2000, 48(12): 3520–3525. doi: 10.1109/78.887045
    HAMPEL F R, RONCHETTI E M, ROUSSEEUW P J, et al. Robust Statistics: The Approach Based on Influence Functions[M]. New York, USA: John Wiley & Sons Inc., 1986: 275–276.
    BAKTASH E, KARIMI M, and WANG Xiaodong. Maximum-likelihood direction finding under elliptical noise using the EM algorithm[J]. IEEE Communications Letters, 2019, 23(6): 1041–1044. doi: 10.1109/LCOMM.2019.2911518
    PAN Yan, DUAN Fabing, CHAPEAU-BLONDEAU F, et al. Noise enhancement in robust estimation of location[J]. IEEE Transactions on Signal Processing, 2018, 66(8): 1953–1966. doi: 10.1109/TSP.2018.2802463
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (3737) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return