Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Zheng CHU, Jiong YU. Performance Prediction Based on Random Forest for the Stream Processing Checkpoint[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1452-1459. doi: 10.11999/JEIT190552
Citation: Zheng CHU, Jiong YU. Performance Prediction Based on Random Forest for the Stream Processing Checkpoint[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1452-1459. doi: 10.11999/JEIT190552

Performance Prediction Based on Random Forest for the Stream Processing Checkpoint

doi: 10.11999/JEIT190552
Funds:  The National Natural Science Foundation of China (61862060, 61462079, 61562086, 61562078), The Doctoral Science, Technology Innovation Project in Xinjiang University (XJUBSCX-201901)
  • Received Date: 2019-07-23
  • Rev Recd Date: 2020-02-17
  • Available Online: 2020-03-10
  • Publish Date: 2020-06-22
  • Since real-time processing scenarios for ever-increasing amount and type of streaming data caused by the development of the Internet of Things (IoT) keep increasing, and strategies based on empirical knowledge for checkpoint configuration are deficiencies, the strategy faces huge challenges, such as time-consuming, labor-intensive, causing system anomalies, etc. To address these challenges, regression algorithm-based prediction is proposed for checkpoint performance. Firstly, six kinds of features, which have a huge influence on the performance, are analyzed, and then feature vectors of the training set are input into the regression algorithms for training, finally, test sets are used for the checkpoint performance prediction. Compared with other machine learning algorithms, the experimental results illustrat that the Random Forest (RF) has lower errors, higher accuracy and faster execution on CPU intensive benchmark, memory intensive benchmark and network intensive benchmark.

  • loading
  • 彭建华, 张帅, 许晓明, 等. 物联网中一种抗大规模天线阵列窃听者的噪声注入方案[J]. 电子与信息学报, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342

    PENG Jianhua, ZHANG Shuai, XU Xiaoming, et al. A noise injection scheme resistant to massive MIMO eavesdropper in IoT[J]. Journal of Electronics &Information Technology, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342
    刘素艳, 刘元安, 吴帆, 等. 物联网中基于相似性计算的传感器搜索[J]. 电子与信息学报, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085

    LIU Suyan, LIU Yuan’an, WU Fan, et al. Sensor search based on sensor similarity computing in the Internet of Things[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085
    CARBONE P, EWEN S, FÓRA G, et al. State management in Apache Flink®: Consistent stateful distributed stream processing[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1718–1729. doi: 10.14778/3137765.3137777
    VENKIVOLU D R and NALE M N. Adaptive encryption in checkpoint recovery of file transfers[P]. US, 20190306221, 2019-10-03.
    KIM Y, NAKAMURA J, KATAYAMA Y, et al. A cooperative partial snapshot algorithm for checkpoint-rollback recovery of large-scale and dynamic distributed systems[C]. The 6th International Symposium on Computing and Networking Workshops (CANDARW), Takayama, Japan, 2018: 285–291. doi: 10.1109/CANDARW.2018.00060.
    TAO Yangyang and YU Shucheng. kFHCO: Optimal VM consolidation via k-Factor horizontal checkpoint oversubscription[C]. 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, USA, 2019: 380–384. doi: 10.1109/ICCNC.2019.8685604.
    GOUNTIA D and ROY S. Checkpoints assignment on cyber-physical digital microfluidic biochips for early detection of hardware Trojans[C]. The 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019: 16–21. doi: 10.1109/ICOEI.2019.8862598.
    ZHANG Hanlin, CHEN Ningjiang, TANG Yusi, et al. Multi-level container checkpoint performance optimization strategy in SDDC[C]. The 4th International Conference on Big Data and Computing, Guangzhou, China, 2019: 253–259. doi: 10.1145/3335484.3335487.
    TITOUNA C, MOUMEN H, and ARI A A A. Cluster head recovery algorithm for wireless sensor networks[C]. The 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 2019: 1905–1910. doi: 10.1109/CoDIT.2019.8820414.
    OVENS S and WOELFEL P. Strongly linearizable implementations of snapshots and other types[C]. 2019 ACM Symposium on Principles of Distributed Computing, Toronto, Canada, 2019: 197–206. doi: 10.1145/3293611.3331632.
    ATHEY S, TIBSHIRANI J, WAGER S, et al. Gemeralized random ferests[J]. Annals of statistics, 2019, 47(2): 1148–1178. doi: 10.1214/18-AOS1709
    CHOI J, GU B, CHIN S, et al. Machine learning predictive model based on national data for fatal accidents of construction workers[J]. Automation in Construction, 2020, 110: 102974. doi: 10.1016/j.autcon.2019.102974
    LYU J and MANOOCHEHRI S. Dimensional prediction for FDM machines using artificial neural network and support vector regression[C]. ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim, USA, 2019. doi: 10.1115/DETC2019-97963.
    DABERDAKU S, TAVAZZI E, and DI CAMILLO B. Interpolation and K-nearest neighbours combined imputation for longitudinal ICU laboratory data[C]. 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China, 2019: 1–3. doi: 10.1109/ICHI.2019.8904624.
    ASAAD R R and ALI R I. Back Propagation Neural Network (BPNN) and sigmoid activation function in multi-layer networks[J]. Academic Journal of Nawroz University, 2019, 8(4): 216–221. doi: 10.25007/ajnu.v8n4a464
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (4528) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return