Advanced Search
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Zhuo CHEN, Gang FENG, Ying HE, Yang ZHOU. Deep Reinforcement Learning Based Migration Mechanism for Service Function Chain in Operator Networks[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2173-2179. doi: 10.11999/JEIT190545
Citation: Zhuo CHEN, Gang FENG, Ying HE, Yang ZHOU. Deep Reinforcement Learning Based Migration Mechanism for Service Function Chain in Operator Networks[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2173-2179. doi: 10.11999/JEIT190545

Deep Reinforcement Learning Based Migration Mechanism for Service Function Chain in Operator Networks

doi: 10.11999/JEIT190545
Funds:  The National Natural Science Foundation of China (61471089, 61401076)
  • Received Date: 2019-07-18
  • Rev Recd Date: 2020-06-14
  • Available Online: 2020-07-14
  • Publish Date: 2020-09-27
  • To improve the service experience provided by the operator network, this paper studies the online migration of Service Function Chain(SFC). Based on the Markov Decision Process(MDP), modeling analysis is performed on the migration of multiple Virtual Network Functions(VNF) in SFC. By combining reinforcement learning and deep neural networks, a double Deep Q-Network(double DQN) based service function chain migration mechanism is proposed. This method can make online migration decisions and avoid over-estimation. Experimental result shows that when compared with the fixed deployment algorithm and the greedy algorithm, the double DQN based SFC migration mechanism has obvious advantages in end-to-end delay and network system revenue, which can help the mobile operator to improve the quality of experience and the efficiency of resources usage.
  • loading
  • CHATRAS B and OZOG F F. Network functions virtualization: The portability challenge[J]. IEEE Network, 2016, 30(4): 4–8. doi: 10.1109/MNET.2016.7513857
    ZHANG Qixia, LIU Fangming, and ZENG Chaobing. Adaptive interference-aware VNF placement for service-customized 5G network slices[C]. IEEE Conference on Computer Communications, Paris, France, 2019: 2449–2457. doi: 10.1109/INFOCOM.2019.8737660.
    AGARWAL S, MALANDRINO F, CHIASSERINI C F, et al. Joint VNF placement and CPU allocation in 5G[C]. IEEE Conference on Computer Communications, Honolulu, USA, 2018: 1943–1951. doi: 10.1109/INFOCOM.2018.8485943.
    KUO T W, LIOU B H, LIN K C J, et al. Deploying chains of virtual network functions: On the relation between link and server usage[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524565.
    TALEB T, KSENTINI A, and FRANGOUDIS P A. Follow-me cloud: When cloud services follow mobile users[J]. IEEE Transactions on Cloud Computing, 2019, 7(2): 369–382. doi: 10.1109/TCC.2016.2525987
    ERAMO V, MIUCCI E, AMMAR M, et al. An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures[J]. IEEE/ACM Transactions on Networking, 2017, 25(4): 2008–2025. doi: 10.1109/TNET.2017.2668470
    HOUIDI O, SOUALAH O, LOUATI W, et al. An efficient algorithm for virtual network function scaling[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–7. doi: 10.1109/GLOCOM.2017.8254727.
    CHO D, TAHERI J, ZOMAYA A Y, et al. Real-time Virtual Network Function (VNF) migration toward low network latency in cloud environments[C]. The 10th IEEE International Conference on Cloud Computing, Honolulu, USA, 2017: 798–801. doi: 10.1109/CLOUD.2017.118.
    兰巨龙, 于倡和, 胡宇翔, 等. 基于深度增强学习的软件定义网络路由优化机制[J]. 电子与信息学报, 2019, 41(11): 2669–2674. doi: 10.11999/JEIT180870

    LAN Julong, YU Changhe, HU Yuxiang, et al. A SDN routing optimization mechanism based on deep reinforcement learning[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2669–2674. doi: 10.11999/JEIT180870
    HUANG Xiaohong, YUAN Tingting, QIAO Guanhua, et al. Deep reinforcement learning for multimedia traffic control in software defined networking[J]. IEEE Network, 2018, 32(6): 35–41. doi: 10.1109/MNET.2018.1800097
    LEE J W, MAZUMDAR R R, and SHROFF N B. Non-Convex optimization and rate control for multi-class services in the Internet[J]. IEEE/ACM Transactions on Networking, 2005, 13(4): 827–840. doi: 10.1109/TNET.2005.852876
    李晨溪, 曹雷, 陈希亮, 等. 基于云推理模型的深度强化学习探索策略研究[J]. 电子与信息学报, 2018, 40(1): 244–248. doi: 10.11999/JEIT170347

    LI Chenxi, CAO Lei, CHEN Xiliang, et al. Cloud reasoning model-based exploration for deep reinforcement learning[J]. Journal of Electronics &Information Technology, 2018, 40(1): 244–248. doi: 10.11999/JEIT170347
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    GHAZNAVI M, KHAN A, SHAHRIAR N, et al. Elastic virtual network function placement[C]. The 4th IEEE International Conference on Cloud Networking, Niagara Falls, Canada, 2015: 255–260. doi: 10.1109/CloudNet.2015.7335318.
    SUGISONO K, FUKUOKA A, and YAMAZAKI H. Migration for VNF instances forming service chain[C]. The 7th IEEE International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–3. doi: 10.1109/CloudNet.2018.8549194.
    LIN Tachun, ZHOU Zhili, TORNATORE M, et al. Demand-aware network function placement[J]. Journal of Lightwave Technology, 2016, 34(11): 2590–2600. doi: 10.1109/JLT.2016.2535401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1696) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return