Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Weili WANG, Qianbin CHEN, Lun TANG. Online Anomaly Detection for Virtualized Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
Citation: Weili WANG, Qianbin CHEN, Lun TANG. Online Anomaly Detection for Virtualized Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531

Online Anomaly Detection for Virtualized Network Slicing

doi: 10.11999/JEIT190531
Funds:  The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • Received Date: 2019-07-15
  • Rev Recd Date: 2020-02-12
  • Available Online: 2020-03-03
  • Publish Date: 2020-06-22
  • In virtualized network slicing scenario, one anomaly Physical Node (PN) or Physical Link (PL) in substrate networks will cause performance degradation of multiple network slices. For new measurements are achieved in each period, two online anomaly detection algorithms to monitor the working states of substrate networks in real time are designed. An online One-Class Support Vector Machine (OCSVM) algorithm is first proposed in this paper to detect the working states of PNs. Without requiring any labeled data, the model parameters of OCSVM can be updated based on the new measurements of Virtual Nodes (VNs) in each iteration. Then, an online Canonical Correlation Analysis (CCA) based PL anomaly detection algorithm is proposed according to the natural correlation of measurements between neighboring VNs of virtual links. With a small amount of labeled data, the algorithm can accurately analyze the working states of PLs. The simulation results verify the effectiveness and robustness of the proposed online anomaly detection algorithms for the virtualized network slicing.

  • loading
  • ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network Slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/MCOM.2017.1600935
    ELAYOUBI S E, JEMAA S B, ALTMAN Z, et al. 5G RAN slicing for verticals: Enablers and challenges[J]. IEEE Communications Magazine, 2019, 57(1): 28–34. doi: 10.1109/MCOM.2018.1701319
    OI A, ENDOU D, MORIYA T, et al. Method for estimating locations of service problem causes in service function chaining[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2016. doi: 10.1109/GLOCOM.2015.7416993.
    YOUSAF F Z, BREDEL M, SCHALLER S, et al. NFV and SDN - key technology enablers for 5G networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2468–2478. doi: 10.1109/JSAC.2017.2760418
    陈前斌, 杨友超, 周钰, 等. 基于随机学习的接入网服务功能链部署算法[J]. 电子与信息学报, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310

    CHEN Qianbin, YANG Youchao, ZHOU Yu, et al. Deployment algorithm of service function chain of access network based on stochastic learning[J]. Journal of Electronics &Information Technology, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310
    COTRONEO D, NATELLA R, and ROSIELLO S. A fault correlation approach to detect performance anomalies in virtual network function chains[C]. The 2017 IEEE 28th International Symposium on Software Reliability Engineering, Toulouse, France, 2017. doi: 10.1109/ISSRE.2017.12.
    SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443–1471. doi: 10.1162/089976601750264965
    JIANG Qingchao and YAN Xuefeng. Multimode process monitoring using variational bayesian inference and canonical correlation analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814–1824. doi: 10.1109/TASE.2019.2897477
    LI Xiaocan, XIE Kun, WANG Xin, et al. Online internet anomaly detection with high accuracy: A fast tensor factorization solution[C]. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 2019: 1900–1908. doi: 10.1109/INFOCOM.2019.8737562.
    DE LA OLIVA A, LI Xi, COSTA-PEREZ X, et al. 5G-TRANSFORMER: Slicing and orchestrating transport networks for industry verticals[J]. IEEE Communications Magazine, 2018, 56(8): 78–84. doi: 10.1109/MCOM.2018.1700990
    MIAO Xuedan, LIU Ying, ZHAO Haiquan, et al. Distributed online one-class support vector machine for anomaly detection over networks[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1475–1488. doi: 10.1109/TCYB.2018.2804940
    RAHIMI A and RECHT B. Random features for large-scale kernel machines[C]. The 20th International Conference on Neural Information Processing Systems, Charlotte, USA, 2007.
    SHALEV-SHWARTZ S, SINGER Y, and SREBRO N. Pegasos: Primal estimated sub-GrAdient sOlver for SVM[C]. The 24th International Conference on Machine learning, Corvallis, USA, 2007. doi: 10.1145/1273496.1273598.
    JIANG Qingchao, DING S X, WANG Yang, et al. Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8148–8157. doi: 10.1109/TIE.2017.2698422
    任驰, 马瑞涛. 网络切片: 构建可定制化的5G网络[J]. 中兴通讯技术, 2018, 24(1): 26–30. doi: 10.3969/j.issn.1009-6868.2018.01.006

    REN Chi and MA Ruitao. Network slicing: Building customizable 5G network[J]. ZTE Technology Journal, 2018, 24(1): 26–30. doi: 10.3969/j.issn.1009-6868.2018.01.006
    XIE Kun, LI Xiaocan, WANG Xin, et al. On-line anomaly detection with high accuracy[J]. IEEE/ACM transactions on networking, 2018, 26(3): 1222–1235. doi: 10.1109/TNET.2018.2819507
    FU Songwei and ZHANG Yan. The due/packet-delivery (v. 2015-04-01)[EB/OL]. https://doi.org/10.15783/C7NP4Z, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (2723) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return