Advanced Search
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Jiacheng ZHANG, Tianshuang QIU, Shengyang LUAN, Jingchun LI, Rong LI. Wideband DOA Estimation via Cyclic Correntropy and Sparse Reconstruction in the Presence of Impulsive Noise[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2587-2591. doi: 10.11999/JEIT190521
Citation: Jiacheng ZHANG, Tianshuang QIU, Shengyang LUAN, Jingchun LI, Rong LI. Wideband DOA Estimation via Cyclic Correntropy and Sparse Reconstruction in the Presence of Impulsive Noise[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2587-2591. doi: 10.11999/JEIT190521

Wideband DOA Estimation via Cyclic Correntropy and Sparse Reconstruction in the Presence of Impulsive Noise

doi: 10.11999/JEIT190521
Funds:  The National Natural Science Foundation of China (61671105, 61172108, 61139001, 81241059, 61501301, 61801197)
  • Received Date: 2019-07-11
  • Rev Recd Date: 2019-11-22
  • Available Online: 2020-09-01
  • Publish Date: 2020-11-16
  • To deal with wideband band Direction Of Arrival (DOA) estimation in the presence of impulsive noise and co-channel interferences, a novel method is proposed with the help of Cyclic CorrEntropy (CCE) and sparse reconstruction. Firstly, the received signal model of wideband sources is analyzed and a virtual array output is constructed, which shows resistance to impulsive noise and co-channel interferences via the characteristics of CCE. Then, to extract the DOA of wideband signals, the virtual array output with a sparse structure is represented and the Normalized Iterative Hard Thresholding (NIHT) is utilized to solve the sparse reconstruction problem. Comprehensive simulation results demonstrate that the proposed method has efficient suppression on impulsive noise and co-channel interference and it can improve both accuracy and efficiency than existing methods.
  • loading
  • KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi: 10.1109/79.526899
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/tsp.2005.850882
    HU Na, YE Zhongfu, XU Xu, et al. DOA estimation for sparse array via sparse signal reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 760–773. doi: 10.1109/TAES.2013.6494379
    WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Two sparse-based methods for off-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87–95. doi: 10.1016/j.sigpro.2017.07.004
    郭英, 东润泽, 张坤峰, 等. 基于稀疏贝叶斯学习的多跳频信号DOA估计方法[J]. 电子与信息学报, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435

    GUO Ying, DONG Runze, ZHANG Kunfeng, et al. Direction of arrival estimation for multiple frequency hopping signals based on sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435
    XU G and KAILATH T. Direction-of-arrival estimation via exploitation of cyclostationary-a combination of temporal and spatial processing[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1775–1786. doi: 10.1109/78.143448
    XIN Jingmin and SANO A. MSE-based regularization approach to direction estimation of coherent narrowband signals using linear prediction[J]. IEEE Transactions on Signal Processing, 2001, 49(11): 2481–2497. doi: 10.1109/78.960396
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J]. IEEE Transactions on Signal processing, 2011, 59(9): 4256–4270. doi: 10.1109/tsp.2011.2159214
    HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435–439. doi: 10.1109/LSP.2014.2358084
    BUTTON M D, GARDINER J G, and GLOVER I A. Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 551–560. doi: 10.1109/tvt.2002.1002503
    BLACKARD K L, RAPPAPORT T S, and BOSTIAN C W. Measurements and models of radio frequency impulsive noise for indoor wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1993, 11(7): 991–1001. doi: 10.1109/49.233212
    NIKIAS C L and SHAO Min. Signal Processing with Alpha-Stable Distributions and Applications[M]. New York: Wiley & Sons, 1995.
    JIN Fangxiao, QIU Tianshuang, LUAN Shengyang, et al. Joint Estimation of the DOA and the number of sources for wideband signals using cyclic correntropy[J]. IEEE Access, 2019, 7: 42482–42494. doi: 10.1109/ACCESS.2019.2904287
    LUAN Shengyang, QIU Tianshuang, ZHU Yongjie, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503–508. doi: 10.1016/j.sigpro.2015.09.023
    BLUMENSATH T and DAVIES M E. Normalized iterative hard thresholding: Guaranteed stability and performance[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 298–309. doi: 10.1109/JSTSP.2010.2042411
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (1159) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return