Citation: | Gang WANG, Yanqing JIN, Hua PENG, Guangwei ZHANG. Error Correction of Lempel-Ziv-Welch Compressed Data[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1436-1443. doi: 10.11999/JEIT190520 |
Lossless data compression system is prone to bit error and causes error spread during communication transmission, which affects its application to file system and wireless communication. For the lossless data compression algorithm Lempel-Ziv-Welch (LZW), which is widely used in the field of general coding, analyzes and utilizes the redundancy of LZW compressed data, carries the check code by selecting part of the codeword and dynamically adjusting the length of its corresponding compressed string. A lossless data compression method Carrier-LZW(CLZW) with error correction capability is proposed. This method does not need additional data, does not change the data specification and coding rules, and is compatible with the standard LZW algorithm. The experimental results show that the file compressed by this method can still be decompressed by the standard LZW decoder. In the range of error correction capability, the method can effectively correct the error of LZW compressed data.
BERTINO E, CHOO K K R, GEORGAKOPOLOUS D, et al. Internet of Things (IoT): Smart and secure service delivery[J]. ACM Transactions on Internet Technology, 2016, 16(4): 22. doi: 10.1145/3013520
|
TALWANA J C and HUANG Jianhua. Smart world of Internet of Things (IoT) and its security concerns[C]. 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 2016: 240–245. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.64.
|
WEN Lulu, ZHOU Kaile, YANG Shanlin, et al. Compression of smart meter big data: A survey[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 59–69. doi: 10.1016/j.rser.2018.03.088
|
CHENG Ledan, GUO Songtao, WANG Ying, et al. Lifting wavelet compression based data aggregation in big data wireless sensor networks[C]. The 22nd IEEE International Conference on Parallel and Distributed Systems, Wuhan, China, 2016: 561–568. doi: 10.1109/ICPADS.2016.0080.
|
徐金甫, 刘露, 李伟, 等. 一种基于阵列配置加速比模型的无损压缩算法[J]. 电子与信息学报, 2018, 40(6): 1492–1498. doi: 10.11999/JEIT170900
XU Jinfu, LIU Lu, LI Wei, et al. A new lossless compression algorithm based on array configuration speedup model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1492–1498. doi: 10.11999/JEIT170900
|
姚军财, 刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法[J]. 电子与信息学报, 2016, 38(5): 1202–1210. doi: 10.11999/JEIT150848
YAO Juncai and LIU Guizhong. An adaptive quantization method of image based on the contrast sensitivity characteristics of human visual system[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1202–1210. doi: 10.11999/JEIT150848
|
YANG J and BHATTACHARYA K. Combining image compression with digital image correlation[J]. Experimental Mechanics, 2019, 59(5): 629–642. doi: 10.1007/s11340-018-00459-y
|
BLASCH E, CHEN Huamei, IRVINE J M, et al. Prediction of compression-induced image interpretability degradation[J]. Optical Engineering, 2018, 57(4): 043108. doi: 10.1117/1.OE.57.4.043108
|
王刚, 彭华, 唐永旺. 破损压缩文件的修复还原[J]. 电子与信息学报, 2019, 41(8): 1831–1837. doi: 10.11999/JEIT180942
WANG Gang, PENG Hua, and TANG Yongwang. Repair and restoration of corrupted compressed files[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1831–1837. doi: 10.11999/JEIT180942
|
罗瑜, 张珍珍. 一种快速的纹理预测和混合哥伦布的无损压缩算法[J]. 电子与信息学报, 2018, 40(1): 137–142. doi: 10.11999/JEIT170305
LUO Yu and ZHANG Zhenzhen. A fast-lossless compression using texture prediction and mixed golomb coding[J]. Journal of Electronics &Information Technology, 2018, 40(1): 137–142. doi: 10.11999/JEIT170305
|
WELCH T A. A technique for high-performance data compression[J]. Computer, 1984, 17(6): 8–19. doi: 10.1109/MC.1984.1659158
|
WANG Digang, ZHAO Xiaoqun, and SUN Qingquan. Novel fault-tolerant decompression method of corrupted huffman files[J]. Wireless Personal Communications, 2018, 102(4): 2555–2574. doi: 10.1007/s11277-018-5277-5
|
DRMOTA M and SZPANKOWSKI W. Redundancy of lossless data compression for known sources by analytic methods[J]. Foundations and Trends® in Communications and Information Theory, 2017, 13(4): 277–417. doi: 10.1561/0100000090
|
KOGA H and YAMAMOTO H. Asymptotic properties on codeword lengths of an optimal FV code for general sources[J]. IEEE Transactions on Information Theory, 2005, 51(4): 1546–1555. doi: 10.1109/TIT.2005.844098
|
FRENKEL S, KOPEETSKY M, and MOLOTKOVSKI R. Lempel-Ziv-welch compression algorithm with exponential decay[C]. The 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management, Beer-Sheva, Israel, 2016: 616–619. doi: 10.1109/SMRLO.2016.108.
|
李从鹤, 郑辉. 一种用于文本压缩的信源容错译码算法[J]. 无线电通信技术, 2006, 32(2): 36–38, 64. doi: 10.3969/j.issn.1003-3114.2006.02.013
LI Conghe and ZHENG Hui. A fault-tolerance decoding algorithm for text compression[J]. Radio Communications Technology, 2006, 32(2): 36–38, 64. doi: 10.3969/j.issn.1003-3114.2006.02.013
|
KLEIN S T and SHAPIRA D. Practical fixed length Lempel-Ziv coding[J]. Discrete Applied Mathematics, 2014, 163: 326–333. doi: 10.1016/j.dam.2013.08.022
|
ZHANG Jie, YANG Enhui, and KIEFFER J C. A universal grammar-based code for lossless compression of binary trees[J]. IEEE Transactions on Information Theory, 2014, 60(3): 1373–1386. doi: 10.1109/TIT.2013.2295392
|
KWON B, GONG M, and LEE S. Novel error detection algorithm for LZSS compressed data[J]. IEEE Access, 2017, 5: 8940–8947. doi: 10.1109/ACCESS.2017.2704900
|
KITAKAMI M and KAWASAKI T. Burst error recovery method for LZSS coding[J]. IEICE Transactions on Information and Systems, 2009, 92(12): 2439–2444. doi: 10.1587/transinf.e92.d.2439
|
PEREIRA Z C, PELLENZ M E, SOUZA R D, et al. Unequal error protection for LZSS compressed data using Reed-Solomon codes[J]. IET Communications, 2007, 1(4): 612–617. doi: 10.1049/iet-com:20060530
|
KEMPA D and KOSOLOBOV D. LZ-end parsing in compressed space[C]. 2017 Data Compression Conference, Snowbird, USA, 2017: 350-359.
|
DO H H, JANSSON J, SADAKANE K, et al. Fast relative Lempel-Ziv self-index for similar sequences[J]. Theoretical Computer Science, 2014, 532: 14–30. doi: 10.1016/j.tcs.2013.07.024
|
REED I S and SOLOMON G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300–304. doi: 10.1137/0108018
|
LOUCHARD G and SZPANKOWSKI W. On the average redundancy rate of the Lempel-Ziv code[J]. IEEE Transactions on Information Theory, 1997, 43(1): 2–8. doi: 10.1109/18.567640
|
DAS S, BULL D M, and WHATMOUGH P N. Error-resilient design techniques for reliable and dependable computing[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(1): 24–34. doi: 10.1109/tdmr.2015.2389038
|
The Canterbury corpus[EB/OL]. http://corpus.canterbury.ac.nz/descriptions/#cantrbry, 2018.
|