Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Jianying FAN, Mingyang MA, Shoubo ZHAO. Research on High Reflective Imaging Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
Citation: Jianying FAN, Mingyang MA, Shoubo ZHAO. Research on High Reflective Imaging Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512

Research on High Reflective Imaging Technology Based on Compressed Sensing

doi: 10.11999/JEIT190512
Funds:  The National Natural Science Foundation of China (61801148, 61803128), The Scientific Research Foundation of Heilongjiang Province (QC2016067)
  • Received Date: 2019-07-09
  • Rev Recd Date: 2020-01-17
  • Available Online: 2020-02-17
  • Publish Date: 2020-06-04
  • When imaging a highly reflective object, the light intensity reflected easily exceeds the maximum quantized value of the light intensity received by the sensor, which causes image distortion of the captured image in the saturated region of light intensity and seriously affects the quality of information transmission. In order to improve the data loss in the high-reflection imaging saturation region, a compression-sensing of high-reflection imaging method based on the new sampling theory of compressed sensing is proposed. A specific measurement matrix is used to conduct linear sampling of the target image, and the single light intensity sampling value of the CCD image sensor is combined with the distribution data in the measurement matrix, and the integrated data is restored and reconstructed with the algorithm to achieve the imaging of the measured target in the high-light environment. The peak signal to noise ratio and gray histogram are used as objective evaluation criteria. Experiments show that this imaging method is robust and feasible, with the proportion of saturated pixels in histogram detection 0% and the peak signal to noise ratio 58.37 dB, realizing the imaging without saturated light in the high-light environment, providing a new direction for the application of compressed sensing in imaging.

  • loading
  • 赵首博, 曲兴华, 冯维, 等. 成像前光学调制系统的眩光测量[J]. 光电工程, 2016, 43(1): 13–17. doi: 10.3969/j.issn.1003-501X.2016.01.003

    ZHAO Shoubo, QU Xinghua, FENG Wei, et al. A measurement method for glare based on the Optical modulation system before image formation[J]. Opto-Electronic Engineering, 2016, 43(1): 13–17. doi: 10.3969/j.issn.1003-501X.2016.01.003
    范剑英, 刘力源, 赵首博. 电机铜排表面毛刺缺陷检测技术研究[J]. 仪器仪表学报, 2019, 40(3): 14–22. doi: 10.19650/j.cnki.cjsi.J1804559

    FAN Jianying, LIU Liyuan, and ZHAO Shoubo. Research on detection technology of burr defects in motor copper[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 14–22. doi: 10.19650/j.cnki.cjsi.J1804559
    ZHAO Shoubo, MA Mingyang, and GUO Cong. Accurate Pixel-to-Pixel alignment method with Six-Axis adjustment for computational photography[J]. IEEE Photonics Journal, 2018, 10(3): 6802416. doi: 10.1109/jphot.2018.2839093
    JIANG Hongzhi, ZHAO Huijie, and LI Xudong. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces[J]. Optics and Lasers in Engineering, 2012, 50(10): 1484–1493. doi: 10.1016/j.optlaseng.2011.11.021
    ZHAO Shoubo, ZHANG Fumin, QU Xinghua, et al. Removal of parasitic image due to metal specularity based on digital micromirror device camera[J]. Optical Engineering, 2014, 53(6): 063105. doi: 10.1117/1.oe.53.6.063105
    YAN Qingsen, ZHU Yu, and ZHANG Yanning. Robust artifact-free high dynamic range imaging of dynamic scenes[J]. Multimedia Tools and Applications, 2019, 78(9): 11487–11505. doi: 10.1007/s11042-018-6625-x
    KALANTARI N K, SHECHTMAN E, BARNES C, et al. Patch-based high dynamic range video[J]. ACM Transactions on Graphics, 2013, 32(6): No. 202. doi: 10.1145/2508363.2508402
    ZHAO Shoubo, LIU Liyuan, and MA Mingyang. Adaptive high-dynamic range three-dimensional shape measurement using DMD camera[J]. IEEE Access, 2019, 7: 67934–67943. doi: 10.1109/access.2019.2918843
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    ELDAR Y C, KUTYNIOK G. Compressed Sensing: Theory and Applications[M]. Cambridge: Cambridge University Press, 2012: 1289–1306. doi: 10.1017/CBO9780511794308.
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    RISTOBAL-HUERTA A, POOT D H J, VOGEL M W, et al. Compressed sensing 3D-GRASE for faster high-resolution MRI[J]. Magnetic Resonance in Medicine, 2019, 82(3): 984–999. doi: 10.1002/mrm.27789
    ZHU Xiaoxiang and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based tomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098
    王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145

    WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
    金艳, 周磊, 姬红兵. 基于稀疏时频分布的跳频信号参数估计[J]. 电子与信息学报, 2018, 40(3): 663–669. doi: 10.11999/JEIT170525

    JIN Yan, ZHOU Lei, and JI Hongbing. Parameter estimation of frequency-hopping signals based on sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2018, 40(3): 663–669. doi: 10.11999/JEIT170525
    FAZEL F, FAZEL M, and STOJANOVIC M. Random access compressed sensing for energy-efficient underwater sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1660–1670. doi: 10.1109/jsac.2011.110915
    孙玉宝, 李欢, 吴敏, 等. 基于图稀疏正则化多测量向量模型的高光谱压缩感知重建[J]. 电子与信息学报, 2014, 36(12): 2942–2948. doi: 10.3724/SP.J.1146.2014.00566

    SUN Yubao, LI Huan, WU Min, et al. Compressed sensing reconstruction of hyperspectral image using the graph sparsity regularized multiple measurement vector model[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2942–2948. doi: 10.3724/SP.J.1146.2014.00566
    LIAO Wenchao, HSIEH J, WANG Chengming, et al. Compressed sensing spectral domain optical coherence tomography with a hardware sparse-sampled camera[J]. Optics Letters, 2019, 44(12): 2955–2958. doi: 10.1364/OL.44.002955
    DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/msp.2007.914730
    余慧敏, 方广有. 压缩感知理论在探地雷达三维成像中的应用[J]. 电子与信息学报, 2010, 32(1): 12–16. doi: 10.3724/SP.J.1146.2009.00040

    YU Huimin and FANG Guangyou. Research on compressive sensing based 3D imaging method applied to ground penetrating radar[J]. Journal of Electronics &Information Technology, 2010, 32(1): 12–16. doi: 10.3724/SP.J.1146.2009.00040
    庄佳衍, 陈钱, 何伟基, 等. 基于压缩感知的动态散射成像[J]. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501

    ZHUANG Jiayan, CHEN Qian, HE Weiji, et al. Imaging through dynamic scattering media with compressed sensing[J]. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015
    LI Yunhui, WANG Xiaodong, WANG Zhi, et al. Modeling and image motion analysis of parallel complementary compressive sensing imaging system[J]. Optics Communications, 2018, 423: 100–110. doi: 10.1016/j.optcom.2018.04.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (2572) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return