Advanced Search
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Qianzhu WANG, Dong FANG, Guangfu WU. Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2216-2222. doi: 10.11999/JEIT190505
Citation: Qianzhu WANG, Dong FANG, Guangfu WU. Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2216-2222. doi: 10.11999/JEIT190505

Multi-User Detection Based on Sparsity Adaptive Matching Pursuit Compressive Sensing for Uplink Grant-free Non-Orthogonal Multiple Access

doi: 10.11999/JEIT190505
Funds:  The Chongqing of Science and Technology Bureau, (cstc2018jszx-cyztzxX0035), The Project of Science and Technology Research Program of Chongqing Education Commission (KJQN201800642)
  • Received Date: 2019-07-05
  • Rev Recd Date: 2020-02-20
  • Available Online: 2020-07-15
  • Publish Date: 2020-09-27
  • Grant-free Non-Orthogonal Multiple Access (NOMA) combined with Multi-User Detection (MUD) technology can meet the requirements of large connection volume, low signaling overhead and low latency transmission in massive Machine Type Communications (mMTC) scenarios. In the MUD algorithm based on Compressed Sensing (CS), the number of active users is often used as known information, but it is difficult to accurately estimate in the actual communication system. Based on this, this paper proposes a multi-user algorithm (Modified Sparsity Adaptive Matching Pursuit MUD, MSAMP-MUP) to improve the adaptive matching of sparsity. Firstly, the algorithm uses the generalized Dice coefficient matching criterion to select the atom that best matches the residual, and updates the user support set. When the residual energy is close to the noise energy, the iteration is terminated to obtain the final support set; Otherwise, the above criteria are used to update the user support set, and the estimation accuracy of the active users in the support set is improved. In the iteration process, different iteration steps are selected according to the ratio of the last two residual energies, so as to reduce the number of detection iterations. The simulation results show that, compared with the traditional CS-based MUD algorithm, the proposed algorithm reduces the bit error rate by about 9% and the number of iterations by about 10%.
  • loading
  • 杨维, 赵懿伟, 侯健琦. 一种改进基于门限的稀疏码多址接入低复杂度多用户检测算法[J]. 电子与信息学报, 2018, 40(5): 1044–1049. doi: 10.11999/JEIT170647

    YANG Wei, ZHAO Yiwei, and HOU Jianqi. An improved threshold-based low complexity multiuser detection scheme for sparse code multiple access system[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1044–1049. doi: 10.11999/JEIT170647
    FAN Bin, SU Xin, JIE Zeng, et al. Method of CS-IC detection in the grant-free NOMA system[C]. The 12th International Symposium on Medical Information and Communication Technology (ISMICT), Sydney, Australia, 2018: 1–5. doi: 10.1109/ISMICT.2018.8573723.
    XU Xiao, RAO Xiongbin, and LAU V K N. Active user detection and channel estimation in uplink CRAN systems[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 2727–2732. doi: 10.1109/ICC.2015.7248738.
    李燕龙, 陈晓, 詹德满, 等. 非正交多址接入中稀疏多用户检测方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026

    LI Yanlong, CHEN Xiao, ZHAN Deman, et al. Method of sparse multi-user detection in non-orthogonal multiple access[J]. Journal of Xidian University:Natural Science, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026
    HAN Zhu, LI Husheng, and YIN Wotao. Compressive Sensing for Wireless Networks[M]. Cambridge: Cambridge University Press, 2013. doi: 10.1017/CBO9781139088497.
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    WANG Bichai, DAI Linglong, ZHANG Yuan, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20(11): 2320–2323. doi: 10.1109/LCOMM.2016.2602264
    OYERINDE O O. Multiuser detector for uplink grant free NOMA systems based on modified subspace pursuit algorithm[C]. The 12th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, Australia, 2018: 1–6. doi: 10.1109/ICSPCS.2018.8631787.
    ABEBE A T and KANG C G. Iterative order recursive least square estimation for exploiting frame-wise sparsity in compressive sensing-based MTC[J]. IEEE Communications Letters, 2016, 20(5): 1018–1021. doi: 10.1109/LCOMM.2016.2539255
    HONG J P, CHOI W, and RAO B D. Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 998–1010. doi: 10.1109/TWC.2014.2363165
    WANG Chao, CHEN Yang, WU Yiqun, et al. Performance evaluation of grant-free transmission for Uplink URLLC services[C]. The 85th IEEE Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–6. doi: 10.1109/VTCSpring.2017.8108593.
    MASOUDI M, AZARI A, YAVUZ E A, et al. Grant-free radio access IoT networks: Scalability analysis in coexistence scenarios[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–7. doi: 10.1109/ICC.2018.8422890.
    赵晓娟, 张爱华, 杨守义, 等. 基于结构化压缩感知的NOMA系统多用户检测[J]. 现代电子技术, 2018, 41(5): 1–4. doi: 10.16652/j.issn.1004-373x.2018.05.001

    ZHAO Xiaojuan, ZHANG Aihua, YANG Shouyi, et al. NOMA system′s multi-user detection based on structurization compressed sensing[J]. Modern Electronics Technique, 2018, 41(5): 1–4. doi: 10.16652/j.issn.1004-373x.2018.05.001
    3GPP. 3GPP TR-36.211 V13.2. 0 3rd Generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical channels and modulation[S]. France: 3GPP, 2016.
    DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. The 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 581–587. doi: 10.1109/ACSSC.2008.5074472.
    张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532–536. doi: 10.3969/j.issn1000-3630.2009.04.021

    ZHANG Yu, LIU Yudong, and JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4): 532–536. doi: 10.3969/j.issn1000-3630.2009.04.021
    MALEKI S, CHEPURI S P, and LEUS G. Optimal hard fusion strategies for cognitive radio networks[C]. 2011 IEEE Wireless Communications and Networking Conference, Cancun, Quintana Roo, Mexico, 2011: 1926–1931. doi: 10.1109/WCNC.2011.5779453.
    DU Yang, DONG Binhong, CHEN Zhi, et al. Efficient multi-user detection for uplink grant-free NOMA: Prior-information aided adaptive compressive sensing perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2812–2828. doi: 10.1109/JSAC.2017.2726279
    ZHAO Xiaojuan, YANG Shouyi, ZHANG Aihua, et al. A compressive sensing based multi-user detection algorithm for SIMa-NOMA systems[C]. The 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5. doi: 10.1109/ISWCS.2018.8491213.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1879) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return