Advanced Search
Volume 42 Issue 5
Jun.  2020
Turn off MathJax
Article Contents
Rong CHEN, Lan CHEN, Arfan Haider WAHLA. Design and Implementation of Cyclic Redundancy Check with Variable Computing Width Based on Formula Recursive Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1261-1267. doi: 10.11999/JEIT190503
Citation: Rong CHEN, Lan CHEN, Arfan Haider WAHLA. Design and Implementation of Cyclic Redundancy Check with Variable Computing Width Based on Formula Recursive Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1261-1267. doi: 10.11999/JEIT190503

Design and Implementation of Cyclic Redundancy Check with Variable Computing Width Based on Formula Recursive Algorithm

doi: 10.11999/JEIT190503
Funds:  The National Science and Technology Major Project (2018ZX03001006-002)
  • Received Date: 2019-07-15
  • Rev Recd Date: 2019-10-30
  • Available Online: 2019-11-07
  • Publish Date: 2020-06-04
  • Cyclic Redundancy Check (CRC) is used in cascade with channel coding to improve the convergence of the decoding. In the new generation of wireless communication systems, such as 5G, both code length and code rate are diverse. To improve the decoding efficiency of cascaded systems, a CRC parallel algorithm with variable computing width is proposed in this paper. Based on the existing fixed bit-width parallel algorithm, this algorithm combines the parallel calculation of feedback data and input data in the formula recursive method, realizing a highly parallel CRC check architecture with variable bit-width CRC calculation. Compared with the existing parallel algorithms, the merged algorithm saves the overhead of circuit resources. When the bit-width is fixed, the resource saving effect is obvious, and at the same time, the feedback delay is also optimized by nearly 50%. When the bit-width is variable, the use of resources is also optimized accordingly.

  • loading
  • LI Bin, HUANG Zhiping, SU Shaojing, et al. Implementation of CRC in 10-gigabit Ethernet based on FPGA[J]. Applied Mechanics and Materials, 2014, 599–601: 1548–1552. doi: 10.4028/www.scientific.net/AMM.599-601.1548
    WANG Bingrui, CHEN Pingping, FANG Yi, et al. The design of vertical RS-CRC and LDPC code for ship-based satellite communications on-the-move[J]. IEEE Access, 2019, 7: 44977–44986. doi: 10.1109/ACCESS.2019.2895746
    CAMPOBELLO G, PATANE G, and RUSSO M. Parallel CRC realization[J]. IEEE Transactions on Computers, 2003, 52(10): 1312–1319. doi: 10.1109/TC.2003.1234528
    MUTHIAH D and RAJ A A B. Implementation of high-speed LFSR design with parallel architectures[C]. 2012 International Conference on Computing, Communication and Applications, Dindigul, India, 2012: 1–6.
    HUO Yuanhong, LI Xiaoyang, WANG Wei, et al. High performance table-based architecture for parallel CRC calculation[C]. The 21st IEEE International Workshop on Local and Metropolitan Area Networks, Beijing, 2015: 1–6.
    BAJARANGBALI and ANAND P A. Design of high speed CRC algorithm for ethernet on FPGA using reduced lookup table algorithm[C]. 2016 IEEE Annual India Conference, Bangalore, India, 2016: 1–6.
    DERBY J H. High-speed CRC computation using state-space transformations[C]. GLOBECOM’01. IEEE Global Telecommunications Conference, San Antonio, USA, 2001: 166–170.
    KENNEDY C and REYHANI-MASOLEH A. High-speed CRC computations using improved state-space transformations[C]. 2009 IEEE International Conference on Electro/Information Technology, Windsor, Canada, 2009: 9–14.
    HU Guanghui, SHA Jin, and WANG Zhongfeng. High-speed parallel LFSR architectures based on improved state-space transformations[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(3): 1159–1163. doi: 10.1109/TVLSI.2016.2608921
    JUNG J, YOO H, LEE Y, et al. Efficient parallel architecture for linear feedback shift registers[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(11): 1068–1072. doi: 10.1109/tcsii.2015.2456294
    CHENG Chao and PARHI K K. High-speed parallel CRC implementation based on unfolding, pipelining, and retiming[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2006, 53(10): 1017–1021. doi: 10.1109/TCSⅡ.2006.882213
    AYINALA M and PARHI K K. High-speed parallel architectures for linear feedback shift registers[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4459–4469. doi: 10.1109/TSP.2011.2159495
    李伟华, 焦秉立. 一种基于分段CRC的LDPC译码的改进算法[J]. 电子与信息学报, 2008, 30(5): 1167–1170. doi: 10.3724/SP.J.1146.2006.01763

    LI Weihua and JIAO Bingli. Improved method for LDPC decoding algorithm aided by segmented cyclic redundancy checks[J]. Journal of Electronics &Information Technology, 2008, 30(5): 1167–1170. doi: 10.3724/SP.J.1146.2006.01763
    TUSHA A, DOĞAN S, and ARSLAN H. IQI mitigation for narrowband IoT systems with OFDM-IM[J]. IEEE Access, 2018, 6: 44626–44634. doi: 10.1109/ACCESS.2018.2864892
    VAN WONTERGHEM J, ALLOUM A, BOUTROS J J, et al. On short-length error-correcting codes for 5G-NR[J]. Ad Hoc Networks, 2018, 79: 53–62. doi: 10.1016/j.adhoc.2018.06.005
    RICHARDSON T and KUDEKAR S. Design of low-density parity check codes for 5G new radio[J]. IEEE Communications Magazine, 2018, 56(3): 28–34. doi: 10.1109/MCOM.2018.1700839
    王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716

    WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (3003) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return