Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Bin LIU, Youheng YANG, Zhibiao ZHAO, Chao WU, Haoran LIU, Yan WEN. A Batch Inheritance Extreme Learning Machine Algorithm Based on Regular Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1734-1742. doi: 10.11999/JEIT190502
Citation: Bin LIU, Youheng YANG, Zhibiao ZHAO, Chao WU, Haoran LIU, Yan WEN. A Batch Inheritance Extreme Learning Machine Algorithm Based on Regular Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1734-1742. doi: 10.11999/JEIT190502

A Batch Inheritance Extreme Learning Machine Algorithm Based on Regular Optimization

doi: 10.11999/JEIT190502
Funds:  The Natural Science Foundation of Hebei Province (F2019203320, E2018203398)
  • Received Date: 2019-07-05
  • Rev Recd Date: 2019-12-12
  • Available Online: 2019-12-20
  • Publish Date: 2020-07-23
  • As a new type of neural network, Extreme Learning Machine (ELM) has extremely fast training speed and good generalization performance. Considering the problem that the Extreme Learning Machine has high computational complexity and huge memory demand when dealing with high dimensional data, a Batch inheritance Extreme Learning Machine (B-ELM) algorithm is proposed. Firstly, the dataset is divided into different batches, and the automatic encoder network is used to reduce the dimension of each batch. Secondly, the inheritance factor is introduced to establish the relationship between adjacent batches. At the same time, the Lagrange optimization function is constructed by combining the regularization framework to realize the mathematical modeling of batch ELM. Finally, the MNIST, NORB and CIFAR-10 datasets are used for the test experiment. The experimental results show that the proposed algorithm not only has higher classification accuracy, but also reduces effectively computational complexity and memory consumption.

  • loading
  • HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126
    李佩佳, 石勇, 汪华东, 等. 基于有序编码的核极限学习顺序回归模型[J]. 电子与信息学报, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765

    LI Peijia, SHI Yong, WANG Huadong, et al. Ordered code-based kernel extreme learning machine for ordinal regression[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765
    HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2012, 42(2): 513–529. doi: 10.1109/tsmcb.2011.2168604
    WANG Yongchang and ZHU Ligu. Research and implementation of SVD in machine learning[C]. The 2017 16th IEEE/ACIS International Conference on Computer and Information Science, Wuhan, China, 2017: 471–475. doi: 10.1109/ICIS.2017.7960038.
    CASTAÑO A, FERNÁNDEZ-NAVARRO F, and HERVÁS-MARTÍNEZ C. PCA-ELM: A robust and pruned extreme learning machine approach based on principal component analysis[J]. Neural Processing Letters, 2013, 37(3): 377–392. doi: 10.1007/s11063-012-9253-x
    ZONG Weiwei, HUANG Guangbin, and CHEN Yiqiang. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101: 229–242. doi: 10.1016/j.neucom.2012.08.010
    ZHAO Rui and MAO Kezhi. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space[J]. IEEE Computational Intelligence Magazine, 2015, 10(3): 30–41. doi: 10.1109/MCI.2015.2437316
    LUO Xiong, XU Yang, WANG Weiping, et al. Towards enhancing stacked extreme learning machine with sparse autoencoder by correntropy[J]. Journal of the Franklin Institute, 2018, 355(4): 1945–1966. doi: 10.1016/j.jfranklin.2017.08.014
    WU Shuang, LI Guoqi, DENG Lei, et al. L1-norm batch normalization for efficient training of deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2043–2051. doi: 10.1109/TNNLS.2018.2876179
    LI Yanghao, WANG Naiyan, SHI Jianping, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109–117. doi: 10.1016/j.patcog.2018.03.005
    LIANG Nanying, HUANG Guangbin, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411–1423. doi: 10.1109/TNN.2006.880583
    HUANG Guangbin. What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and john von Neumann’s puzzle[J]. Cognitive Computation, 2015, 7(3): 263–278. doi: 10.1007/s12559-015-9333-0
    YI Yugen, QIAO Shaojie, ZHOU Wei, et al. Adaptive multiple graph regularized semi-supervised extreme learning machine[J]. Soft Computing, 2018, 22(11): 3545–3562. doi: 10.1007/s00500-018-3109-x
    CHENG Kai and LU Zhenzhou. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 2018, 194: 86–96. doi: 10.1016/j.compstruc.2017.09.002
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
    VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]. The 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 1096–1103. doi: 10.1145/1390156.1390294.
    SALAKHUTDINOV R and HINTON G. An efficient learning procedure for deep Boltzmann machines[J]. Neural Computation, 2012, 24(8): 1967–2006. doi: 10.1162/NECO_a_00311
    CAMBRIA E, HUANG Guangbin, KASUN L L C, et al. Extreme learning machines[trends & controversies][J]. IEEE Intelligent Systems, 2013, 28(6): 30–59. doi: 10.1109/MIS.2013.140
    TANG Jiexiong, DENG Chenwei, and HUANG Guangbin. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 809–821. doi: 10.1109/TNNLS.2015.2424995
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (3210) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return