Advanced Search
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
Lianyin JIA, Mingxian CHEN, Mengjuan LI, Jinguo YOU, Jiaman DING. State View Based Efficient Hilbert Encoding and Decoding Algorithms[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1494-1501. doi: 10.11999/JEIT190501
Citation: Lianyin JIA, Mingxian CHEN, Mengjuan LI, Jinguo YOU, Jiaman DING. State View Based Efficient Hilbert Encoding and Decoding Algorithms[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1494-1501. doi: 10.11999/JEIT190501

State View Based Efficient Hilbert Encoding and Decoding Algorithms

doi: 10.11999/JEIT190501
Funds:  The National Natural Science Foundation of China (61562054), Fund of China Scholarship Council (201908530036)
  • Received Date: 2019-07-05
  • Rev Recd Date: 2020-02-03
  • Available Online: 2020-02-27
  • Publish Date: 2020-06-22
  • Hilbert curve is an important method for high-dimensional reduction to one-dimensional. It has good characteristics of spatial aggregation and spatial continuity and is widely used in geographic information system, spatial databases and information retrieval. Existing Hilbert encoding or decoding algorithms do not consider the differences between input data, thus treating them equally. To this end, an efficient Hilbert coding algorithm Front-Zero-Free Hilbert Encoding(FZF-HE) and an efficient decoding algorithm Front-Zero-Free Hilbert Decoding(FZF-HD) are proposed. FZF-HE and FZF-HD can quickly identify the 0 s of the front part of input data before iterative calculation by combining efficient state views and first bit-1 detection algorithm, thus reducing the number of iterations and the complexity of the algorithm, and improving the encoding and decoding efficiency. The experimental results show that efficiencies of these two algorithms are slightly higher than existing algorithms for uniform distributed data, and are much higher than existing algorithms for skew distributed data.

  • loading
  • GUNTHER S and STOCCO L. Generation of spatial orders and space-filling curves[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1791–1800. doi: 10.1109/TIP.2015.2409571
    周映虹, 马争鸣. 基于层次模型的重要性编码算法[J]. 电子与信息学报, 2009, 31(6): 1497–1500.

    ZHOU Yinghong and MA Zhengming. A significance coding algorithm based on layer model[J]. Journal of Electronics &Information Technology, 2009, 31(6): 1497–1500.
    CHEN Lu, GAO Yunjun, LI Xinhan, et al. Efficient metric indexing for similarity search and similarity joins[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(3): 556–571. doi: 10.1109/TKDE.2015.2506556
    SINGH H and BAWA S. A survey of traditional and mapReduceBased spatial query processing approaches[J]. ACM SIGMOD Record, 2017, 46(2): 18–29. doi: 10.1145/3137586.3137590
    ABDULJABBAR M, MARKOMANOLIS G S, IBEID H, et al. Communication reducing algorithms for distributed hierarchical N-Body problems with boundary distributions[C]. The 32nd International Supercomputing Conference, Frankfurt, Germany, 2017: 79–96.
    LIU Hui, WANG Kun, YANG Bo, et al. Dynamic load balancing using hilbert space-filling curves for parallel reservoir simulations[C]. The SPE Reservoir Simulation Conference, Montgomery, USA, 2017. doi: 10.2118/182613-MS.
    HAN Guangjie, XUAN Xuan, LIU Li, et al. A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(1): 115–125. doi: 10.1109/TETC.2017.2687319
    KONG Lingping, PAN J S, SUNG T W, et al. An energy balancing strategy based on hilbert curve and genetic algorithm for wireless sensor networks[J]. Wireless Communications and Mobile Computing, 2017, 2017: 5720659.
    BOHM C, PERDACHER M, and PLANT C. A novel hilbert curve for cache-locality preserving loops[J]. IEEE Transactions on Big Data, To be published. doi: 10.1109/TBDATA.2018.2830378
    MORTON G M. A computer oriented geodetic data base and a new technique in file sequencing[EB/OL]. https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument, 1966.
    BUTZ A R. Alternative algorithm for Hilbert's space-filling curve[J]. IEEE Transactions on Computers, 1971, C-20(4): 424–426. doi: 10.1109/T-C.1971.223258
    MOON B, JAGADISH H V, FALOUTSOS C, et al. Analysis of the clustering properties of the hilbert space-filling curve[J]. IEEE Transactions on Knowledge and Data Engineering, 2001, 13(1): 124–141. doi: 10.1109/69.908985
    NAGARKAR P, CANDAN K S, and BHAT A. Compressed spatial hierarchical bitmap (cSHB) indexes for efficiently processing spatial range query workloads[J]. Proceedings of The VLDB Endowment, 2015, 8(12): 1382–1393. doi: 10.14778/2824032.2824038
    CHRISTOFORAKI M, HE Jinru, DIMOPOULOS C, et al. Text vs. space: Efficient geo-search query processing[C]. The 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 2011: 423–432.
    FISHER A J. A new algorithm for generating Hilbert curves[J]. Practice and Experience, 1986, 16(1): 5–12. doi: 10.1002/spe.4380160103
    李绍俊, 钟耳顺, 王少华, 等. 基于状态转移矩阵的Hilbert码快速生成算法[J]. 地球信息科学学报, 2014, 16(6): 846–851.

    LI Shaojun, ZHONG Ershun, WANG Shaohua, et al. An algorithm for Hilbert ordering code based on state-transition matrix[J]. Journal of Geo-Information Science, 2014, 16(6): 846–851.
    XCTORRES. Hilbert_spatial_index[EB/OL]. https://github.com/xcTorres/hilbert_spatial_index, 2017.
    BURKARDT J. HILBERT_CURVE convert between 1D and 2D coordinates of Hilbert curve[EB/OL]. http://people.math.sc.edu/Burkardt/c_src/hilbert_curve/hilbert_curve.html, 2015.
    MOORE D. Fast Hilbert curve generation, sorting, and range queries[EB/OL]. https://github.com/Cheedoong/hilbert, 2016.
    曹雪峰, 万刚, 张宗佩. 紧致的Hilbert曲线Gray码索引算法[J]. 测绘学报, 2016, 45(S1): 90–98. doi: 10.11947/j.AGCS.2016.F010

    CAO Xuefeng, WAN Gang, and ZHANG Zongpei. Compact Hilbert curve index algorithm based on Gray code[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S1): 90–98. doi: 10.11947/j.AGCS.2016.F010
    LI R. Hilbert range query decomosition[EB/OL]. https://github.com/cloudray8580/Hilbert RangeQueryDecomosition, 2019.
    ZHANG Jian and KAMATA S I. A generalized 3-D Hilbert scan using look-up tables[J]. Journal of Visual Communication and Image Representation, 2012, 23(3): 418–425. doi: 10.1016/j.jvcir.2011.12.005
    LIU Hui, CUI Tao, LENG Wei, et al. Encoding and decoding algorithms for arbitrary dimensional Hilbert order[J]. 2016, arXiv: 1601.01274.
    刘辉, 冷伟, 崔涛. 高维Hilbert曲线的编码与解码算法设计[J]. 数值计算与计算机应用, 2015, 36(1): 42–58.

    LIU Hui, LENG Wei, and CUI Tao. Development of encoding and decoding algorithms for high dimensional Hilbert curves[J]. Journal on Numerical Methods and Computer Applications, 2015, 36(1): 42–58.
    ROSETTA. Find first and last set bit of a long integer[EB/OL]. http://rosettacode.org/wiki/Find_first_and_last_set_bit_of_a_long_integer, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (2420) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return