Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Shi YI, Zhijuan WU, Jingming ZHU, Xinrong LI, Xuesong YUAN. Motion Defocus Infrared Image Restoration Based on Multi Scale Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1766-1773. doi: 10.11999/JEIT190495
Citation: Shi YI, Zhijuan WU, Jingming ZHU, Xinrong LI, Xuesong YUAN. Motion Defocus Infrared Image Restoration Based on Multi Scale Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1766-1773. doi: 10.11999/JEIT190495

Motion Defocus Infrared Image Restoration Based on Multi Scale Generative Adversarial Network

doi: 10.11999/JEIT190495
Funds:  The National Natural Science Foundation of China (61771096)
  • Received Date: 2019-07-03
  • Rev Recd Date: 2020-01-22
  • Available Online: 2020-03-25
  • Publish Date: 2020-07-23
  • Infrared thermal imaging system has obvious advantages in target recognition and detection at night, and the motion defocus blur caused by dynamic environment on mobile platform affects the application of the above imaging system. In order to solve the above problems, based on the research of infrared image restoration method after motion defocusing using generating confrontation network, a Infrared thermal image Multi scale deblurGenerative Adversarial Network (IMdeblurGAN) is proposed to suppress motion defocusing blurring effectively while preserving the image by using generating confrontation network to suppress the motion defocusing blurring of infrared image to hold the contrast of infrared image details, to improve the detection and recognition ability of night targets on motion platform. The experimental results show that compared with the existing optimal restoration methods for blurred images, Peak Signal to Noise Ratio (PSNR) of the image is increased by 5%, the Structure SIMilarity (SSIM) is increased by 4%, and the confidence score of YOLO for target recognition is increased by 6%.

  • loading
  • 崔美玉. 论红外热像仪的应用领域及技术特点[J]. 中国安防, 2014(12): 90–93. doi: 10.3969/j.issn.1673-7873.2014.12.026

    CUI Meiyu. On the application field and technical characteristics of infrared thermal imager[J]. China Security &Protection, 2014(12): 90–93. doi: 10.3969/j.issn.1673-7873.2014.12.026
    KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: Blind motion deblurring using conditional adversarial networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8183–8192.
    TAO Xin, GAO Hongyun, SHEN Xiaoyong, et al. Scale-recurrent network for deep image deblurring[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8174–8182.
    HE Zewei, CAO Yanpeng, DONG Yafei, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach[J]. Applied Optics, 2018, 57(18): D155–D164. doi: 10.1364/AO.57.00D155
    邵保泰, 汤心溢, 金璐, 等. 基于生成对抗网络的单帧红外图像超分辨算法[J]. 红外与毫米波学报, 2018, 37(4): 427–432. doi: 10.11972/j.issn.1001-9014.2018.04.009

    SHAO Baotai, TANG Xinyi, JIN Lu, et al. Single frame infrared image super-resolution algorithm based on generative adversarial nets[J]. Journal of Infrared and Millimeter Wave, 2018, 37(4): 427–432. doi: 10.11972/j.issn.1001-9014.2018.04.009
    刘鹏飞, 赵怀慈, 曹飞道. 多尺度卷积神经网络的噪声模糊图像盲复原[J]. 红外与激光工程, 2019, 48(4): 0426001. doi: 10.3788/IRLA201948.0426001

    LIU Pengfei, ZHAO Huaici, and CAO Feidao. Blind deblurring of noisy and blurry images of multi-scale convolutional neural network[J]. Infrared and Laser Engineering, 2019, 48(4): 0426001. doi: 10.3788/IRLA201948.0426001
    BOUSMALIS K, SILBERMAN N, DOHAN D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 95–104.
    李凌霄, 冯华君, 赵巨峰, 等. 红外焦平面阵列的盲元自适应快速校正[J]. 光学精密工程, 2017, 25(4): 1009–1018. doi: 10.3788/OPE.20172504.1009

    LI Lingxiao, FENG Huajun, ZHAO Jufeng, et al. Adaptive and fast blind pixel correction of IRFPA[J]. Optics and Precision Engineering, 2017, 25(4): 1009–1018. doi: 10.3788/OPE.20172504.1009
    DONG Chao, LOY C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199.
    EFRAT N, GLASNER D, APARTSIN A, et al. Accurate blur models vs. image priors in single image super-resolution[C]. The 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2832–2839.
    HE Anfeng, LUO Chong, TIAN Xinmei, et al. A twofold Siamese network for real-time object tracking[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4834–4843.
    LIN Zhouchen and SHUM H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 83–97. doi: 10.1109/TPAMI.2004.1261081
    杨阳, 杨静宇. 基于显著性分割的红外行人检测[J]. 南京理工大学学报, 2013, 37(2): 251–256.

    YANG Yang and YANG Jingyu. Infrared pedestrian detection based on saliency segmentation[J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 251–256.
    PINNEGAR C R and MANSINHA L. Time-local spectral analysis for non-stationary time series: The S-transform for noisy signals[J]. Fluctuation and Noise Letters, 2003, 3(3): L357–L364. doi: 10.1142/S0219477503001439
    CAO Yanpeng and TISSE C L. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera[J]. Optics Letters, 2014, 39(3): 646–648. doi: 10.1364/OL.39.000646
    REAL E, SHLENS J, MAZZOCCHI S, et al. YouTube-boundingboxes: A large high-precision human-annotated data set for object detection in video[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7464–7473.
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. The 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312.
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2886) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return