Citation: | Weixia GUI, Qian LU, Meili SU. A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484 |
In order to diagnose fault units in the large-scale multiprocessor systems more quickly and accurately, a system-level fault diagnosis algorithm—FireWorks Algorithm-Back Propagation Fault Diagnosis (FWA-BPFD) based on fireworks algorithm and Back Propagation(BP) neural network is proposed. Firstly, two population strategy, cooperative operator and optimal operator are introduced into fireworks algorithm. A new fitness function is designed, and the mutation operator, mapping rule and selection strategy are optimized. Then, the optimization process of weight and threshold value in BP neural network is optimized by the self-regulating mechanism of global and local searching ability of fireworks algorithm. Simulation results show that compared with other algorithms, this algorithm not only reduces the number of iterations and training time, but also improves the accuracy of diagnosis.
PREPARATA F P, METZE G, and CHIEN R T. On the connection assignment problem of diagnosable systems[J]. IEEE Transactions on Electronic Computers, 1967, EC-16(6): 848–854. doi: 10.1109/PGEC.1967.264748
|
BARSI F, GRANDONI F, and MAESTRINI P. A theory of diagnosability of digital systems[J]. IEEE Transactions on Computers, 1976, C-25(6): 585–593. doi: 10.1109/tc.1976.1674658
|
CHWA K Y and HAKIMI S L. Schemes for fault-tolerant computing: a comparison of modularly redundant and t-diagnosable systems[J]. Information and Control, 1981, 49(3): 212–238. doi: 10.1016/S0019-9958(81)90388-0
|
MALEK M. A comparison connection assignment for diagnosis of multiprocessor systems[C]. The 7th Annual Symposium on Computer Architecture. New York, USA, 1980: 31–36. doi: 10.1145/800053.801906.
|
MAENG J and MALEK M. A comparison connection assignment for self-diagnosis of multiprocessor systems[C]. The 11th International Symposium on Fault-Tolerant Computing, Portland, USA, 1981: 173–175.
|
XIE Min, YE Liangcheng, and LIANG Jiarong. A t/k diagnosis algorithm on hypercube‐like networks[J]. Concurrency and Computation: Practice and Experience, 2018, 30(6): e4358. doi: 10.1002/cpe.4358
|
冯海林, 雷花, 梁伦. 一种基于PMC模型下的概率性矩阵诊断算法[J]. 南京理工大学学报: 自然科学版, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013
FENG Hailin, LEI Hua, and LIANG Lun. Probability matrix diagnosis algorithm based on PMC model[J]. Journal of Nanjing University of Science and Technology, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013
|
云龙, 梁家荣, 周宁. 基于互连网络系统故障的新型自适应诊断算法[J]. 计算机应用研究, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016
YUN Long, LIANG Jiarong, and ZHOU Ning. Novel adapted algorithm for interconnection network[J]. Application Research of Computers, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016
|
MOURAD E and NAYAK A. Comparison-based system-level fault diagnosis: A neural network approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(6): 1047–1059. doi: 10.1109/TPDS.2011.248
|
归伟夏, 刘翠. 一种Malek模型下的系统故障诊断算法[J]. 计算机工程与应用, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130
GUI Weixia and LIU Cui. System-level diagnosis algorithm based on Malek model[J]. Computer Engineering and Applications, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130
|
WANG Yuxi, LI Zhan, XU Minghui, et al. An evolutionary approach based on ant colony system to system-level fault diagnosis[C]. The 8th IEEE International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016: 2493–2497. doi: 10.1109/IPEMC.2016.7512690.
|
赵冬. 关于系统级故障诊断的两种高效算法[D]. [硕士论文], 南京财经大学, 2016.
ZHAO Dong. Two efficient algorithms about system-level fault diagnosis[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2016.
|
LU Qian, GUI Weixia, and SU Meili. A fireworks algorithm for the system-level fault diagnosis based on MM* model[J]. IEEE Access, 2019, 7: 136975–136985. doi: 10.1109/ACCESS.2019.2942336
|
韩树楠, 张旻, 李歆昊. 基于构造代价函数求解的自同步扰码盲识别方法[J]. 电子与信息学报, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026
HAN Shunan, ZHANG Min, and LI Xinhao. A blind identification method of self-synchronous scramblers based on optimization of established cost function[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026
|
梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J]. 电子与信息学报, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration basedon brain storming optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
|
CUI Jiefen, LI Yinping, WANG Shixin, et al. Directional preparation of anticoagulant-active sulfated polysaccharides from Enteromorpha prolifera using artificial neural networks[J]. Scientific Reports, 2018, 8(1): No. 3062. doi: 10.1038/s41598-018-21556-x
|
LI Jingmei, TIAN Qiao, ZHANG Guoyin, et al. Task scheduling algorithm based on fireworks algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): No. 256. doi: 10.1186/s13638-018-1259-2
|
XUE Yu, ZHAO Binping, MA Tinghuai, et al. A self-adaptive fireworks algorithm for classification problems[J]. IEEE Access, 2018, 6: 44406–44416. doi: 10.1109/ACCESS.2018.2858441
|
刘田田. 基于BP神经网络的系统级故障诊断算法研究[D]. [硕士论文], 南京财经大学, 2015.
LIU Tiantian. System level fault diagnosis algorithm research based on BP neural network[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2015.
|