Citation: | Jie MA, Binbin ZHONG, Yanan JIAO. Copy-move Forgeries Detection Based on Polar Sine Transform[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1172-1178. doi: 10.11999/JEIT190481 |
Polar Sine Transform (PST) is used to detect Copy-move forgeries in the paper, and the image to be detected is transformed into gray scale image and feature extraction is carried out by PST. Improved PatchMatch, a fast approximate nearest neighbor search algorithm, is used to match feature descriptors to overcome the problem of long time consuming caused by matching global descriptors. Experiments show that the proposed method is not only effective for linear Copy-move forgeries and rotation interference forgeries, but also robust to noise and JPEG compression interference forgeries. Finally, the experimental results of synthetic interference forgeries show that the accuracy can reach 98.0% when the synthetic forgeries range is small.
AL-QERSHI O M and KHOO B E. Passive detection of copy-move forgery in digital images: State-of-the-art[J]. Forensic Science International, 2013, 231(1/3): 284–295. doi: 10.1016/j.forsciint.2013.05.027
|
ZHOU Xinmin, WANG Kaiyuan, and FU Jian. A method of SIFT simplifying and matching algorithm improvement[C]. IEEE 2016 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2016: 73–77. doi: 10.1109/ICIICII.2016.0029.
|
AHSAN A M and MOHAMAD D B. Machine learning technique for object detection based on SURF feature[J]. International Journal of Computational Vision and Robotics, 2017, 7(1/2): 6–19. doi: 10.1504/IJCVR.2017.081232
|
FARID H. Image forgery detection[J]. IEEE Signal Processing Magazine, 2009, 26(2): 16–25. doi: 10.1109/MSP.2008.931079
|
PIVA A. An overview on image forensics[J]. ISRN Signal Processing, 2013, 2013: 496701.
|
AL-QERSHI O M and KHOO B E. Enhanced matching method for copy-move forgery detection by means of Zernike moments[C]. The 13th International Workshop on Digital-Forensics and Watermarking, Taipei, China, 2014: 485–497. doi: 10.1007/978-3-319-19321-2_37.
|
闫旭, 姜威, 贲晛烨. 基于改进Hu不变矩的图像篡改检测算法[J]. 光学技术, 2018, 44(2): 171–176. doi: 10.13741/j.cnki.11-1879/o4.2018.02.008
YAN Xu, JIANG Wei, and BEN Xianye. Image tamper detection algorithm based on improved Hu invariant moments[J]. Optical Technique, 2018, 44(2): 171–176. doi: 10.13741/j.cnki.11-1879/o4.2018.02.008
|
AMERINI I, BALLAN L, CALDELLI R, et al. A SIFT-based forensic method for copy–move attack detection and transformation recovery[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099–1110. doi: 10.1109/TIFS.2011.2129512
|
MUHAMMAD G, HUSSAIN M, KHAWAJI K, et al. Blind copy move image forgery detection using dyadic undecimated wavelet transform[C]. The 17th IEEE International Conference on Digital Signal Processing, Corfu, Greece, 2011. doi: 10.1109/ICDSP.2011.6004974.
|
CHRISTLEIN V, RIESS C, JORDAN J, et al. An evaluation of popular copy-move forgery detection approaches[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(6): 1841–1854. doi: 10.1109/TIFS.2012.2218597
|
YAP P T, JIANG Xudong, and KOT A C. Two-dimensional polar harmonic transforms for invariant image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1259–1270. doi: 10.1109/TPAMI.2009.119
|
李扬, 吴敏渊, 颜佳. 基于改进PatchMatch的自相似性图像超分辨率算法[J]. 计算机应用研究, 2018, 35(4): 1231–1235. doi: 10.3969/j.issn.1001-3695.2018.04.058
LI Yang, WU Minyuan, and YAN Jia. Self-similarity based image super-resolution algorithm using optimized PatchMatch[J]. Application Research of Computers, 2018, 35(4): 1231–1235. doi: 10.3969/j.issn.1001-3695.2018.04.058
|
BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: A randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): No. 24. doi: 10.1145/1531326.1531330
|
BARNES C, SHECHTMAN E, GOLDMAN D B, et al. The generalized PatchMatch correspondence algorithm[C]. The 11th European Conference on Computer Vision–ECCV 2010, Heraklion, Greece, 2010: 29–43. doi: 10.1007/978-3-642-15558-1_3.
|
COZZOLINO D, POGGI G, and VERDOLIVA L. Efficient dense-field Copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284–2297. doi: 10.1109/TIFS.2015.2455334
|
EHRET T and ARIAS P. On the convergence of PatchMatch and its variants[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 1121–1129. doi: 10.1109/CVPR.2018.00123.
|
EHRET T. Automatic detection of internal copy-move forgeries in images[J]. Image Processing on Line, 2018(8): 167–191. doi: 10.5201/ipol.2018.213
|