Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Yinghui QUAN, Xia GAO, Minghui SHA, Xiada CHEN, Yachao LI, Mengdao XING, Chaoliang YUE. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1611-1618. doi: 10.11999/JEIT190474
Citation: Yinghui QUAN, Xia GAO, Minghui SHA, Xiada CHEN, Yachao LI, Mengdao XING, Chaoliang YUE. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1611-1618. doi: 10.11999/JEIT190474

High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm

doi: 10.11999/JEIT190474
Funds:  The National Natural Science Foundation of China (61303035, 61772397), The Foundation Research Funds for Central University, The Innovation Fund of Xidian University
  • Received Date: 2019-06-27
  • Rev Recd Date: 2020-03-17
  • Available Online: 2020-04-17
  • Publish Date: 2020-07-23
  • Parameter estimation is very important for radar to detect and recognize targets. In this paper, a high speed multi-target parameter estimation method for Frequency Agility-Orthogonal Frequency Division Multiplexing(FA-OFDM) radar based on Expectation Maximization(EM) algorithm is proposed. Firstly, a promising idea is to combine narrowband Orthogonal Frequency Division Multiplexing (OFDM) signals and frequency agility, multiple subcarriers that frequency hopping randomly are simultaneously transmitted within each pulse width. Then, all echoes of a single pulse are compressed and sparsely reconstructed to achieve 1-demension high range resolution. Subsequently, the high resolution range of multiple targets at each pulse time are obtained to constitute the observation data, and Gauss mixture model is established. EM algorithm is applied to estimate the parameters of the model and the range and velocity of multiple targets. Also, multiple time-range lines are fitted at the same time, and the slope of the line corresponds to the velocity of the target, as well as, the vertical intercept of the line corresponds to the initial range of the target, separately. Finally, the influence of the Signal-to-Noise Ratio (SNR) on detection probability and the target velocity on relative error of estimation are analyzed, respectively. Simulations are provided to verify the effectiveness of the proposal.

  • loading
  • 霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335

    HUO Kai and ZHAO Jingjing. The Development and prospect of the new OFDM radar[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335
    肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
    WANG Jun, ZHANG Bocheng, and LEI Peng. Ambiguity function analysis for OFDM radar signals[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059592.
    刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547

    LIU Bingfan and CHEN Baixiao. Integration of MIMO Radar and Communication with OFDM-LFM Signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
    SCHWEIZER B, SCHINDLER D, KNILL C, et al. Expanding the unambiguous velocity limitation of the stepped-carrier OFDM radar scheme[C]. The 15th European Radar Conference, Madrid, Spain, 2018: 22–25. doi: 10.23919/EuRAD.2018.8546621.
    黄瑞, 杜小勇, 胡卫东. OFDM雷达多目标运动参数的近似最大似然估计[J]. 雷达学报, 2018, 7(4): 507–513. doi: 10.12000/JR17116

    HUANG Rui, DU Xiaoyong, and HU Weidong. Approximate maximum likelihood estimator of multi-target motion parameters for orthogonal frequency division multiplexing radar[J]. Journal of Radars, 2018, 7(4): 507–513. doi: 10.12000/JR17116
    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059539.
    LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720798.
    SCHWEIZER B, KNILL C, SCHINDLER D, et al. Stepped-Carrier OFDM-Radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1610–1618. doi: 10.1109/TMTT.2017.2751463
    LELLOUCH G, MISHRA A K, and INGGS M. Stepped OFDM radar technique to resolve range and Doppler simultaneously[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 937–950. doi: 10.1109/TAES.2014.130753
    KNILL C, SCHWEIZER B, ROOS F, et al. High range and Doppler resolution by application of compressed sensing using low baseband bandwidth OFDM radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3535–3546. doi: 10.1109/TMTT.2018.2830389
    LI Hongtao, WANG Chaoyu, WANG Ke, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 984–990. doi: 10.1049/iet-rsn.2014.0454
    KNILL C, ROOS F, SCHWEIZER B, et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 300–302. doi: 10.1109/LMWC.2019.2901405
    QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700
    QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
    CHOI J. Sparse signal detection for space shift keying using the Monte Carlo EM algorithm[J]. IEEE Signal Processing Letters, 2016, 23(7): 974–978. doi: 10.1109/LSP.2016.2577707
    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 162–165.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (4195) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return