Citation: | Yinghui QUAN, Xia GAO, Minghui SHA, Xiada CHEN, Yachao LI, Mengdao XING, Chaoliang YUE. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1611-1618. doi: 10.11999/JEIT190474 |
Parameter estimation is very important for radar to detect and recognize targets. In this paper, a high speed multi-target parameter estimation method for Frequency Agility-Orthogonal Frequency Division Multiplexing(FA-OFDM) radar based on Expectation Maximization(EM) algorithm is proposed. Firstly, a promising idea is to combine narrowband Orthogonal Frequency Division Multiplexing (OFDM) signals and frequency agility, multiple subcarriers that frequency hopping randomly are simultaneously transmitted within each pulse width. Then, all echoes of a single pulse are compressed and sparsely reconstructed to achieve 1-demension high range resolution. Subsequently, the high resolution range of multiple targets at each pulse time are obtained to constitute the observation data, and Gauss mixture model is established. EM algorithm is applied to estimate the parameters of the model and the range and velocity of multiple targets. Also, multiple time-range lines are fitted at the same time, and the slope of the line corresponds to the velocity of the target, as well as, the vertical intercept of the line corresponds to the initial range of the target, separately. Finally, the influence of the Signal-to-Noise Ratio (SNR) on detection probability and the target velocity on relative error of estimation are analyzed, respectively. Simulations are provided to verify the effectiveness of the proposal.
霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335
HUO Kai and ZHAO Jingjing. The Development and prospect of the new OFDM radar[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335
|
肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
|
WANG Jun, ZHANG Bocheng, and LEI Peng. Ambiguity function analysis for OFDM radar signals[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059592.
|
刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
LIU Bingfan and CHEN Baixiao. Integration of MIMO Radar and Communication with OFDM-LFM Signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
|
SCHWEIZER B, SCHINDLER D, KNILL C, et al. Expanding the unambiguous velocity limitation of the stepped-carrier OFDM radar scheme[C]. The 15th European Radar Conference, Madrid, Spain, 2018: 22–25. doi: 10.23919/EuRAD.2018.8546621.
|
黄瑞, 杜小勇, 胡卫东. OFDM雷达多目标运动参数的近似最大似然估计[J]. 雷达学报, 2018, 7(4): 507–513. doi: 10.12000/JR17116
HUANG Rui, DU Xiaoyong, and HU Weidong. Approximate maximum likelihood estimator of multi-target motion parameters for orthogonal frequency division multiplexing radar[J]. Journal of Radars, 2018, 7(4): 507–513. doi: 10.12000/JR17116
|
LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059539.
|
LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720798.
|
SCHWEIZER B, KNILL C, SCHINDLER D, et al. Stepped-Carrier OFDM-Radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1610–1618. doi: 10.1109/TMTT.2017.2751463
|
LELLOUCH G, MISHRA A K, and INGGS M. Stepped OFDM radar technique to resolve range and Doppler simultaneously[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 937–950. doi: 10.1109/TAES.2014.130753
|
KNILL C, SCHWEIZER B, ROOS F, et al. High range and Doppler resolution by application of compressed sensing using low baseband bandwidth OFDM radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3535–3546. doi: 10.1109/TMTT.2018.2830389
|
LI Hongtao, WANG Chaoyu, WANG Ke, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 984–990. doi: 10.1049/iet-rsn.2014.0454
|
KNILL C, ROOS F, SCHWEIZER B, et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 300–302. doi: 10.1109/LMWC.2019.2901405
|
QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700
|
QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
|
CHOI J. Sparse signal detection for space shift keying using the Monte Carlo EM algorithm[J]. IEEE Signal Processing Letters, 2016, 23(7): 974–978. doi: 10.1109/LSP.2016.2577707
|
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 162–165.
|