Citation: | Jiazhen CHEN, Weimin WU, Zihua ZHENG, Feng YE, Guiren LIAN, Li XU. Controllable Magnification for Visual Saliency Object Based on Virtual Optics[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1209-1215. doi: 10.11999/JEIT190469 |
A high-resolution controllable magnification method for visual saliency object based on virtual optics is proposed in this paper. The original image is placed on the virtual object plane. Firstly, the diffractive wave of the original image on the virtual diffraction plane is obtained by inverse diffraction calculation, and then the forward diffraction calculation is carried out after the virtual diffraction wave is irradiated by spherical wave. The original images with different magnification can be reconstructed by changing the position of the observation plane. The simulation results show that compared with the general interpolation method, the magnified image shows a good visual perception effect, especially in the saliency region. When the degraded face image is used as the signal to be reconstructed, the significant areas such as eyes and nose are clearer than the general method. The local salient region in the original image is segmented by the level set method combined with salient map, and the magnification and contour extraction are performed. The contours show good smoothness.
PARK S C, PARK M K, and KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21–36. doi: 10.1109/msp.2003.1203207
|
LI Xin and ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521–1527. doi: 10.1109/83.951537
|
ASUNI N and GIACHETTI A. Accuracy improvements and artifacts removal in edge based image interpolation[C]. The 3rd International Conference on Computer Vision Theory and Applications, Funchal, Portugal, 2008: 58–65.
|
ZHANG Yunfeng, FAN Qinglan, BAO Fangxun, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782–3797. doi: 10.1109/TIP.2018.2826139
|
YANG Wenhan, FENG Jiashi, YANG Jianchao, et al. Deep edge guided recurrent residual learning for image super-resolution[J]. IEEE Transactions on Image Processing, 2017, 26(12): 5895–5907. doi: 10.1109/TIP.2017.2750403
|
MORSE B S and SCHWARTZWALD D. Image magnification using level-set reconstruction[C]. 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001: 333–340. doi: 10.1109/CVPR.2001.990494.
|
RATAKONDA K and AHUJA N. POCS based adaptive image magnification[C]. 1998 IEEE International Conference on Image Processing, Chicago, USA, 1998: 203–207. doi: 10.1109/ICIP.1998.727167.
|
CAI Qing, LIU Huiying, QIAN Yiming, et al. Saliency-guided level set model for automatic object segmentation[J]. Pattern Recognition, 2019, 93: 147–163. doi: 10.1016/j.patcog.2019.04.019
|
李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究[J]. 物理学报, 2010, 59(4): 2457–2461. doi: 10.7498/aps.59.2457
LI Junchang and FAN Zebin. Algorithm of the non-interpolation wave-front reconstruction of the color digital holography[J]. Acta Physica Sinica, 2010, 59(4): 2457–2461. doi: 10.7498/aps.59.2457
|
李俊昌, 熊秉衡. 信息光学教程[M]. 北京: 科学出版社, 2011: 45–57.
LI Junchang and XIONG Bingheng. Information Optics[M]. Beijing: Science Press, 2011: 45–57.
|
LI Junchang, PENG Zujie, TANKAM P, et al. Digital holographic reconstruction of a local object field using an adjustable magnification[J]. Journal of the Optical Society of America A, 2011, 28(6): 1291–1296. doi: 10.1364/JOSAA.28.001291
|
RESTREPO J F and GARCIA-SUCERQUIA J. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform[J]. Applied Optics, 2010, 49(33): 6430–6435. doi: 10.1364/AO.49.006430
|
GOODMAN J W. Introduction to Fourier Optics[M]. 2nd ed. New York: McGraw-Hill Editions, 1996: 88–110.
|
SCHNARS U and JÜPTNER W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85–R101. doi: 10.1088/0957-0233/13/9/201
|
QIN Yao, LU Huchuan, XU Yiqun, et al. Saliency detection via cellular automata[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 110–119. doi: 10.1109/CVPR.2015.7298606.
|
LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243–3254. doi: 10.1109/TIP.2010.2069690
|
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851
|
吴援明, 梁恩志. 一种基于熵的放大后图像质量的评价方法[J]. 信号处理, 2004, 20(2): 201–203. doi: 10.3969/j.issn.1003-0530.2004.02.022
WU Yuanming and LIANG Enzhi. A new method of zoomed images evaluation[J]. Signal Processing, 2004, 20(2): 201–203. doi: 10.3969/j.issn.1003-0530.2004.02.022
|
HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8. doi: 10.1109/CVPR.2007.383267.
|
QIN Yi, GONG Qiong, WANG Zhipeng, et al. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation[J]. Optics Express, 2016, 24(23): 26877–26886. doi: 10.1364/OE.24.026877
|