Citation: | Jingqi HUANG, Chen HU, Shanpeng SUN, Xiang GAO, Bing HE. A Distributed Space Target Tracking Algorithm Based on Asynchronous Multi-sensor Networks[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1132-1139. doi: 10.11999/JEIT190460 |
To solve the problem of asynchronous sampling and communication delay of sensor network in space target tracking, an Asynchronous Distributed algorithm based on Information Filtering (ADIF) is proposed. First, local state information and measurement information with sampling time is transmitted between local sensor and adjacent nodes in a certain topology structure. Then, the local sensor sorts the received asynchronous information by time, and ADIF algorithm is used to calculate the target state respectively. This method is simple to implement, the frequency of communication between sensors is small, and it supports the real-time change of network topology, which is suitable for multi-target tracking. In this paper, single target and multi-target tracking are simulated respectively. The results show that the algorithm can effectively solve the problem of asynchronous sensor filtering, and the distributed filtering accuracy converges to the centralized result.
JIA Bin, XIN Ming, PHAM K, et al. Multiple sensor estimation using a high-degree cubature information filter[C]. SPIE 8739, Sensors and Systems for Space Applications VI, Baltimore, USA, 2013: 87390T. doi: 10.1117/12.2015546.
|
LIU Song, SHEN-TU Han, CHEN Huajie, et al. Asynchronous multi-sensor fusion multi-target tracking method[C]. The 14th IEEE International Conference on Control and Automation, Anchorage, USA, 2018: 459–463.
|
KAMAL A T, FARRELL J A, and ROY-CHOWDHURY A K. Information weighted consensus[C]. The 51st IEEE Conference on Decision and Control (CDC), Maui, USA, 2012: 2732–2737.
|
汪晗, 成昂轩, 王坤, 等. 无线传感器网络分布式迭代定位误差控制算法[J]. 电子与信息学报, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344
WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344
|
CHEN Bo, HU Guoqiang, HO D W C, et al. Distributed Kalman filtering for time-varying discrete sequential systems[J]. Automatica, 2019, 99: 228–236. doi: 10.1016/j.automatica.2018.10.025
|
BATTISTELLI G, CHISCI L, and SELVI D. A distributed Kalman filter with event-triggered communication and guaranteed stability[J]. Automatica, 2018, 93: 75–82. doi: 10.1016/j.automatica.2018.03.005
|
OLFATI-SABER R. Distributed Kalman filtering for sensor networks[C]. The 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 5492–5498.
|
OLFATI-SABER R. Kalman-Consensus Filter: Optimality, stability, and performance[C]. The 48th IEEE Conference on Decision and Control, Shanghai, China, 2009: 7036–7042.
|
CATTIVELLI F S and SAYED A H. Diffusion strategies for distributed Kalman filtering and smoothing[J]. IEEE Transactions on Automatic Control, 2010, 55(9): 2069–2084. doi: 10.1109/TAC.2010.2042987
|
HU Jinwen, XIE Lihua, and ZHANG Cishen. Diffusion Kalman filtering based on covariance intersection[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 891–902. doi: 10.1109/TSP.2011.2175386
|
WANG Shaocheng and REN Wei. On the convergence conditions of distributed dynamic state estimation using sensor networks: A unified framework[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1300–1316. doi: 10.1109/TCST.2017.2715849
|
KOWALCZUK Z and DOMŹALSKI M. Asynchronous distributed state estimation for continuous-time stochastic processes[J]. International Journal of Applied Mathematics and Computer Science, 2013, 23(2): 327–339. doi: 10.2478/amcs-2013-0025
|
楚天鹏. 多光电跟踪设备异步序贯分布式目标跟踪算法[J]. 红外与激光工程, 2017, 46(9): 0926002. doi: 10.3788/IRLA201746.0926002
CHU Tianpeng. Distributed asynchronous sequential fusion algorithm for multiple optic-electronic tracking devices[J]. Infrared and Laser Engineering, 2017, 46(9): 0926002. doi: 10.3788/IRLA201746.0926002
|
ZHU Guangming, ZHOU Fan, XIE Li, et al. Sequential asynchronous filters for target tracking in wireless sensor networks[J]. IEEE Sensors Journal, 2014, 14(9): 3174–3182. doi: 10.1109/JSEN.2014.2325400
|
SHARMA J, STOKES G H, VON BRAUN C, et al. Toward operational space-based space surveillance[J]. Lincoln Laboratory Journal, 2002, 13(2): 309–334.
|
JULIER S J and UHLMANN J K. General Decentralized Data Fusion with Covariance Intersection[M]. LLINAS J, HALL D, and LIGGINS II M. Handbook of Multisensor Data Fusion. 2nd ed. Boca Raton, USA: CRC Press, 2001: 319–342.
|
JIA Bin, XIN Ming, and CHENG Yang. Multiple sensor estimation using the sparse Gauss-Hermite quadrature information filter[C]. 2012 American Control Conference, Montreal, Canada, 2012: 5544–5549.
|
杨潇, 谢京稳, 郭军海, 等. 高速采样测量数据处理方法研究[J]. 飞行器测控学报, 2008, 27(5): 49–52.
YANG Xiao, XIE Jingwen, GUO Junhai, et al. Study on methods of high sampling rate data processing[J]. Journal of Spacecraft TT&C Technology, 2008, 27(5): 49–52.
|