Advanced Search
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Hongyan WANG, Haikun ZHANG. Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2788-2795. doi: 10.11999/JEIT190452
Citation: Hongyan WANG, Haikun ZHANG. Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2788-2795. doi: 10.11999/JEIT190452

Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background

doi: 10.11999/JEIT190452
Funds:  The National Natural Science Foundation of China (61301258, 61271379), China Postdoctoral Science Foundation (2016M590218), The Key Laboratory Foundation (61424010106), The Henan Province Support Plans for Key Scientific Research Projects of Colleges and Universities (14A520079), The Henan Province Plans for Science and Technology Development (162102210168)
  • Received Date: 2019-06-20
  • Rev Recd Date: 2020-04-20
  • Available Online: 2020-08-29
  • Publish Date: 2020-11-16
  • Focusing on the issue that the detection accuracy of moving object is significantly reduced by background motion, a low-rank and sparse decomposition based moving object detection method is developed. Firstly, in order to solve the problem that the nuclear norm over-penalizing large singular values lead to the optimal solution of the obtained minimization problem can not be obtained and then the detection performance is decreased, the gamma norm ($\gamma {\rm{ - norm}}$) is introduced to acquire almost unbiased approximation of rank function. In what follows, the ${L_{{1 / 2}}}$ norm is used to extract the sparse foreground object to enhance the robustness to noise, and the spatial continuity constraint is proposed to suppress dynamic background pixels such that the moving object detection model can be constructed on the basis of the sparse and spatially discontinuous nature of the false alarm pixels. After that, the Augmented Lagrange Multiplier (ALM) method, which is the extension of the Alternating Direction Minimizing (ADM) strategy, can be employed to deal with the acquired constrained minimization problem. Compared with some state-of-the-art algorithms, the experimental results show that the proposed method can significantly improve the accuracy of moving object detection in the case of dynamic background.
  • loading
  • LUO Yuan, ZHOU Hanxing, TAN Qin, et al. Key frame extraction of surveillance video based on moving object detection and image similarity[J]. Pattern Recognition and Image Analysis, 2018, 28(2): 225–231. doi: 10.1134/S1054661818020190
    SENTHIL M A, SUGANYA D K, SIVARANJANI A, et al. A study on various methods used for video summarization and moving object detection for video surveillance applications[J]. Multimedia Tools and Applications, 2018, 77(3): 23273–23290. doi: 10.1007/s11042-018-5671-8
    CHEN Changhong, LIANG Jimin, ZHAO Heng, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977–984. doi: 10.1016/j.patrec.2009.04.012
    KE Ruimin, LI Zhibin, TANG Jinjun, et al. Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 54–64. doi: 10.1109/TITS.2018.2797697
    YONG Hongwei, MENG Deyu, ZUO Wangmeng, et al. Robust online matrix factorization for dynamic background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1726–1740. doi: 10.1109/TPAMI.2017.2732350
    LIU Hongkun, DAI Jialun, WANG Ruchen, et al. Combining background subtraction and three-frame difference to detect moving object from underwater video[C]. OCEANS 2016, Shanghai, China, 2016: 1–5.
    SEVILLA-LARA L, SUN Deqing, JAMPANI V, et al. Optical flow with semantic segmentation and localized layers[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3889–3898.
    PRASAD D K, PRASATH C K, RAJAN D, et al. Object detection in a maritime environment: Performance evaluation of background subtraction methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1787–1802. doi: 10.1109/tits.2018.2836399
    ZENG Zhi, JIA Jianyuan, YU Dalin, et al. Pixel modeling using histograms based on fuzzy partitions for dynamic background subtraction[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(3): 584–593. doi: 10.1109/TFUZZ.2016.2566811
    STAUFFER C and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, USA, 1999: 246–252.
    ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]. The 17th International Conference on Pattern Recognition, Cambridge, UK, 2004: 28–31.
    CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11. doi: 10.1145/1970392.1970395
    DING Xinghao, HE Lihan, and CARIN L. Bayesian robust principal component analysis[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3419–3430. doi: 10.1109/TIP.2011.2156801
    GAO Junbin. Robust L1 principal component analysis and its Bayesian variational inference[J]. Neural Computation, 2008, 20(2): 555–572. doi: 10.1162/neco.2007.11-06-397
    WANG Naiyan, YAO Tiansheng, WANG Jingdong, et al. A probabilistic approach to robust matrix factorization[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 126–139.
    ZHOU Xiaowei, YANG Can, and YU Weichuan. Moving object detection by detecting contiguous outliers in the low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597–610. doi: 10.1109/TPAMI.2012.132
    WANG Yi, JODOIN P M, PORIKLI F, et al. CDnet 2014: An expanded change detection benchmark dataset[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, 2014: 393–400.
    WANG Shusen, LIU Dehua, and ZHANG Zhihua. Nonconvex relaxation approaches to robust matrix recovery[C]. The 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 2013: 1764–1770.
    JIA Sen, ZHANG Xiujun, and LI Qingquan. Spectral–spatial hyperspectral image classification using 1/2 regularized low-rank representation and sparse representation-based graph cuts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2473–2484. doi: 10.1109/JSTARS.2015.2423278
    ZHANG Hengmin, YANG Jian, XIE Jianchun, et al. Weighted sparse coding regularized nonconvex matrix regression for robust face recognition[J]. Information Sciences, 2017, 394–395: 1–17. doi: 10.1016/j.ins.2017.02.020
    CAO Wenfei, SUN Jian, and XU Zongben. Fast image deconvolution using closed-form thresholding formulas of regularization[J]. Journal of Visual Communication and Image Representation, 2013, 24(1): 31–41. doi: 10.1016/j.jvcir.2012.10.006
    CAO Xiaochun, YANG Liang, and GUO Xiaojie. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014–1027. doi: 10.1109/TCYB.2015.2419737
    CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1/2): 89–97. doi: 10.1023/b:jmiv.0000011325.36760.1e
    XUE Yawen, GUO Xiaojie, and CAO Xiaochun. Motion saliency detection using low-rank and sparse decomposition[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 1485–1488.
    XU Zongben, CHANG Xiangyu, XU Fengmin, et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013–1027. doi: 10.1109/TNNLS.2012.2197412
    BECK A and TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419–2434. doi: 10.1109/TIP.2009.2028250
    MAHADEVAN V and VASCONCELOS N. Spatiotemporal saliency in dynamic scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 171–177. doi: 10.1109/TPAMI.2009.112
    GOLUB G H and REINSCH C. Singular value decomposition and least squares solutions[J]. Numerische Mathematik, 1970, 14(5): 403–420. doi: 10.1007/BF02163027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (1252) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return