Advanced Search
Volume 42 Issue 5
Jun.  2020
Turn off MathJax
Article Contents
Shuxin YANG, Wen LIANG, Kaili ZHU. Measurement of Node Influence Based on Three-level Neighbor in Complex Networks[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1140-1148. doi: 10.11999/JEIT190440
Citation: Shuxin YANG, Wen LIANG, Kaili ZHU. Measurement of Node Influence Based on Three-level Neighbor in Complex Networks[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1140-1148. doi: 10.11999/JEIT190440

Measurement of Node Influence Based on Three-level Neighbor in Complex Networks

doi: 10.11999/JEIT190440
Funds:  The National Natural Science Foundation of China (61662028), The Scientific Technology Research Foundation of the Education Department of Jiangxi Province (GJJ170518), The Special Foundation of Postgraduate Innovation of Jiangxi province (YC2018-S331)
  • Received Date: 2019-06-17
  • Rev Recd Date: 2020-02-02
  • Available Online: 2020-02-20
  • Publish Date: 2020-06-04
  • There are some limitations in the existing metric methods for measuring node influence. A measurement method of node influence with three-level neighbors is proposed, which is based on the principle of three-degree influence, and considering the appropriate level of local measurement and the scalability of the large-scale network. Firstly, the neighbors with propagation attenuation characteristics in the second and third level of a node are regarded as a whole, which is used to measure the influence of the node. Then, an algorithm for measure called Three-level Influence Measurement (TIM) is proposed. Finally, in order to validate the effectiveness of the algorithm, the experiments on three datasets are conducted by using susceptible-infected-recovered model and independent cascade model. The experimental results show that the proposed algorithm is superior in consistency of influence, discrimination, sorting performance and other evaluation indexes. Furthermore, the TIM is applied to effectively solve the problem of maximizing influence.

  • loading
  • 刘阳, 季新生, 刘彩霞. 一种基于边界节点识别的复杂网络局部社区发现算法[J]. 电子与信息学报, 2014, 36(12): 2809–2815. doi: 10.3724/SP.J.1146.2013.01955

    LIU Yang, JI Xinsheng, and LIU Caixia. Detecting local community structure based on the identification of boundary nodes in complex networks[J]. Journal of Electronics&Information Technology, 2014, 36(12): 2809–2815. doi: 10.3724/SP.J.1146.2013.01955
    田晶, 方华强, 刘佳佳, 等. 运用复杂网络方法分析城市道路网的鲁棒性[J]. 武汉大学学报: 信息科学版, 2019, 44(5): 771–777. doi: 10.13203/j.whugis20150334

    TIAN Jing, FANG Huaqiang, LIU Jiajia, et al. Robustness analysis of urban street networks using complex network method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 771–777. doi: 10.13203/j.whugis20150334
    王凯, 刘树新, 于洪涛, 等. 基于共同邻居有效性的复杂网络链路预测算法[J]. 电子科技大学学报, 2019, 48(3): 432–439. doi: 10.3969/j.issn.1001-0548.2019.03.020

    WANG Kai, LIU Shuxin, YU Hongtao, et al. Predicting missing links of complex network via effective common neighbors[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 432–439. doi: 10.3969/j.issn.1001-0548.2019.03.020
    韩忠明, 刘雯, 李梦琪, 等. 基于节点向量表达的复杂网络社团划分算法[J]. 软件学报, 2019, 30(4): 1045–1061. doi: 10.13328/j.cnki.jos.005387

    HAN Zhongming, LIU Wen, LI Mengqi, et al. Community detection algorithm based on node embedding vector representation[J]. Journal of Software, 2019, 30(4): 1045–1061. doi: 10.13328/j.cnki.jos.005387
    韩忠明, 陈炎, 李梦琪, 等. 一种有效的基于三角结构的复杂网络节点影响力度量模型[J]. 物理学报, 2016, 65(16): 168901. doi: 10.7498/aps.65.168901

    HAN Zhongming, CHEN Yan, LI Mengqi, et al. An efficient node influence metric based on triangle in complex networks[J]. Acta Physica Sinica, 2016, 65(16): 168901. doi: 10.7498/aps.65.168901
    杨青林, 王立夫, 李欢, 等. 基于相对距离的复杂网络谱粗粒化方法[J]. 物理学报, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848

    YANG Qinglin, WANG Lifu, LI Huan, et al. A spectral coarse graining algorithm based on relative distance[J]. Acta Physica Sinica, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
    林冠强, 莫天文, 叶晓君, 等. 基于TOPSIS和CRITIC法的电网关键节点识别[J]. 高电压技术, 2018, 44(10): 3383–3389. doi: 10.13336/j.1003-6520.hve.20180925030

    LIN Guanqiang, MO Tianwen, YE Xiaojun, et al. Critical node identification of power networks based on TOPSIS and CRITIC methods[J]. High Voltage Engineering, 2018, 44(10): 3383–3389. doi: 10.13336/j.1003-6520.hve.20180925030
    CHRISTAKIS N A and FOWLER J H. Social contagion theory: Examining dynamic social networks and human behavior[J]. Statistics in Medicine, 2013, 32(4): 556–577. doi: 10.1002/sim.5408
    CHRISTAKIS N A and FOWLER J H. Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives[M]. New York: Little, Brown and Company, 2009: 30–117.
    许小可, 胡海波, 张伦, 等. 社交网络上的计算传播学[M]. 北京: 高等教育出版社, 2015: 163–198.

    XU Xiaoke, HU Haibo, ZHANG Lun, et al. Computational Communication in Social Networks[M]. Beijing: Higher Education Press, 2015: 163–198.
    陈晓龙. 社会网络影响力最大化算法及其传播模型研究[D]. [硕士论文], 哈尔滨工程大学, 2016: 20–22.

    CHEN Xiaolong. Research on influence maximization and diffusion model in social networks[D]. [Master dissertation], Harbin Engineering University, 2016: 20–22.
    王俊, 余伟, 胡亚慧, 等. 基于3-layer中心度的社交网络影响力最大化算法[J]. 计算机科学, 2014, 41(1): 59–63. doi: 10.3969/j.issn.1002-137X.2014.01.009

    WANG Jun, XU Wei, HU Yahui, et al. Heuristic algorithm based on 3-layer centrality for influence maximization in social networks[J]. Computer Science, 2014, 41(1): 59–63. doi: 10.3969/j.issn.1002-137X.2014.01.009
    CHEN Duanbing, LÜ Linyuan, SHANG Mingsheng, et al. Identifying influential nodes in complex networks[J]. Physica A:Statistical Mechanics and its Applications, 2012, 391(4): 1777–1787. doi: 10.1016/j.physa.2011.09.017
    FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35–41. doi: 10.2307/3033543
    LI Jianxin, LIU Chengfei, XU J X, et al. Personalized influential topic search via social network summarization[C]. The 33rd IEEE International Conference on Data Engineering, San Diego, USA, 2016: 1820–1834. doi: 10.1109/ICDE.2017.15.
    CHEN Wei, WANG Yajun, and YANG Siyu. Efficient influence maximization in social networks[C]. The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 199–208. doi: 10.1145/1557019.1557047.
    KEMPE D, KLEINBERG J, and TARDOS É. Maximizing the spread of influence through a social network[C]. The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, USA, 2003: 137–146. doi: 10.1145/956750.956769.
    曹玖新, 董丹, 徐顺, 等. 一种基于k-核的社会网络影响最大化算法[J]. 计算机学报, 2015, 38(2): 238–248. doi: 10.3724/SP.J.1016.2015.00238

    CAO Jiuxin, DONG Dan, XU Shun, et al. A k-core based algorithm for influence maximization in social networks[J]. Chinese Journal of Computers, 2015, 38(2): 238–248. doi: 10.3724/SP.J.1016.2015.00238
    IBNOULOUAFI A and EL HAZITI M. Density centrality: Identifying influential nodes based on area density formula[J]. Chaos,Solitons&Fractals, 2018, 114: 69–80. doi: 10.1016/j.chaos.2018.06.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (3308) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return