Citation: | Lun TANG, Yannan WEI, Qi TAN, Rui TANG, Qianbin CHEN. Joint Congestion Control and Resource Allocation Dynamic Scheduling Strategy for Network Slices in Heterogeneous Cloud Raido Access Network[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1244-1252. doi: 10.11999/JEIT190439 |
For online dynamic radio resources optimization for network slices in Heterogeneous Cloud Raido Access Network (H-CRAN), by comprehensively considering traffic admission control, congestion control, resource allocation and reuse, the problem is formulated as a stochastic optimization programming which maximizes network average total throughput subject to Base Station (BS) transmit power, system stability, Quality of Service (QoS) requirements of different slices and resource allocation constraints. Then, a joint congestion control and resource allocation dynamic scheduling algorithm is proposed which will dynamically allocate resources to users in network slices with distinct performance requirements within each resource scheduling time slot. The simulation results show that the proposed algorithm can improve the network overall throughput while satisfying the QoS requirement of each slice user and maintaining network stability. Besides, it could also flexibly strike a dynamic balance between delay and throughput by simply tuning an introduced control parameter.
Cisco System. Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022 White Paper[R/OL]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html, 2019.
|
LI Xin, SAMAKA M, CHAN H A, et al. Network slicing for 5G: challenges and opportunities[J]. IEEE Internet Computing, 2017, 21(5): 20–27. doi: 10.1109/MIC.2017.3481355
|
ITU-R. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond[EB/OL]. http://www.itu.int/pub/R-REC/en. 2020.
|
LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184
|
ZHANG Haijun, WANG Baobao, JIANG Chunxiao, et al. Energy efficient dynamic resource optimization in NOMA system[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 5671–5683. doi: 10.1109/TWC.2018.2844359
|
DANG Tian and PENG Mugen. Delay-aware radio resource allocation optimization for network slicing in fog radio access networks[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403717.
|
AMANI N, PEDRAM H, TAHERI H, et al. Energy-efficient resource allocation in heterogeneous cloud radio access networks via BBU offloading[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1365–1377. doi: 10.1109/TVT.2018.2882466
|
KIM T and CHANG J M. Profitable and energy-efficient resource optimization for heterogeneous cloud-based radio access networks[J]. IEEE Access, 2019, 7: 34719–34737. doi: 10.1109/ACCESS.2019.2904766
|
ZHANG Biling, MAO Xingwang, YU J L, et al. Resource allocation for 5G heterogeneous cloud radio access networks with D2D communication: a matching and coalition approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5883–5894. doi: 10.1109/TVT.2018.2802900
|
唐伦, 魏延南, 马润琳, 等. 虚拟化云无线接入网络下基于在线学习的网络切片虚拟资源分配算法[J]. 电子与信息学报, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771
TANG Lun, WEI Yannan, MA Runlin, et al. Online learning-based virtual resource allocation for network slicing in virtualized cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771
|
MEI Jie, ZHENG Kan, ZHAO Long, et al. A latency and reliability guaranteed resource allocation scheme for LTE V2V communication systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3850–3860. doi: 10.1109/TWC.2018.2816942
|
NEELY M J. Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3(1): 15–62. doi: 10.2200/S00271ED1V01Y201006CNT007
|
MOKDAD A, AZMI P, MOKARI N, et al. Cross-layer energy efficient resource allocation in PD-NOMA based H-CRANs: implementation via GPU[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1246–1259. doi: 10.1109/TMC.2018.2860985
|
TANG Liya, ZHANG Xian, XIANG Hongyu, et al. Joint resource allocation and caching placement for network slicing in fog radio access networks[C]. The 18th International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017: 1–6. doi: 10.1109/SPAWC.2017.8227791.
|
LEE Y L, LOO J, CHUAH T C, et al. Dynamic network slicing for multitenant heterogeneous cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2146–2161. doi: 10.1109/TWC.2017.2789294
|
TANG Lun, YANG Xixi, WU Xiaolin, et al. Queue stability-based virtual resource allocation for virtualized wireless networks with self-backhauls[J]. IEEE Access, 2018, 6: 13604–13616. doi: 10.1109/ACCESS.2018.2797088
|