Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Qinghua ZHANG, Guohong PANG, Xintai LI, Xueqiu ZHANG. Optimal Granularity Selection Method Based on Cost-sensitive Sequential Three-way Decisions[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3001-3009. doi: 10.11999/JEIT200821
Citation: Ting SUN, Chunxi DONG, Yu MAO. A TDOA-FDOA Passive Positioning Algorithm Based on the Semi-Definite Relaxation Technique[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1599-1605. doi: 10.11999/JEIT190435

A TDOA-FDOA Passive Positioning Algorithm Based on the Semi-Definite Relaxation Technique

doi: 10.11999/JEIT190435
  • Received Date: 2019-06-13
  • Rev Recd Date: 2019-10-28
  • Available Online: 2020-02-04
  • Publish Date: 2020-07-23
  • In the passive location of moving target, the closed-form solution can reach Cramér-Rao Lower Bound (CRLB) under the low noise level, but these algorithms often can not adapt to the large measurement noise condition. For this problem, this paper proposes a passive positioning algorithm based on the Semi-Definite Relaxation (SDR) using Time Difference Of Arrival (TDOA) and Frequency Difference Of Arrival (FDOA). Firstly, this method constructs the pseudo-linear equation of the typical closed-form solution. Secondly, the idea of Stochastic Robust Least Squares (SRLS) and the nonlinear relationship between the target parameters and the additional variables are used to transform the localization problem into the least squares problem with quadratic equality. Using Semi-Definite Programming (SDP) technique, constrained least squares problem is then converted into the SDP problem, which is finally solved by the optimization toolbox. The proposed method does not require an initial priori information and simulations show the effectiveness of the proposed method.

  • 王鼎, 胡涛. 无源定位技术-二次等式约束最小二乘估计理论与方法[M]. 北京: 电子工业出版社, 2018: 3–9.

    WANG Ding and HU Tao. Least-Squares Estimation Theory and Method in Passive Location with Quadratic Equality Constraints[M]. Beijing: Publishing House of Electronics Industry, 2018: 3–9.
    朱国辉, 冯大政, 聂卫科. 传感器位置误差情况下基于多维标度分析的时差定位算法[J]. 电子学报, 2016, 44(1): 21–26. doi: 10.3969/j.issn.0372-2112.2016.01.004

    ZHU Guohui, FENG Dazheng, and NIE Weike. Multidimensional scaling based TDOA localization algorithm with sensor location errors[J]. Acta Electronica Sinica, 2016, 44(1): 21–26. doi: 10.3969/j.issn.0372-2112.2016.01.004
    WANG Yue and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524–6535. doi: 10.1109/twc.2015.2456057
    赵勇胜, 赵拥军, 赵闯. 基于双基地距离的多站多外辐射源无源定位算法[J]. 电子学报, 2018, 46(12): 2840–2847. doi: 10.3969/j.issn.0372-2112.2018.12.004

    ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. Multi-transmitter multi-receiver passive location using bistatic range measurements[J]. Acta Electronica Sinica, 2018, 46(12): 2840–2847. doi: 10.3969/j.issn.0372-2112.2018.12.004
    周龙健, 罗景青, 孔辉. 基于虚拟时差的运动阵列空间无源定位算法[J]. 电子与信息学报, 2017, 39(7): 1759–1763. doi: 10.11999/JEIT160860

    ZHOU Longjian, LUO Jingqing, and KONG Hui. A passive location algorithm based on the virtual TDOAs of moving array[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1759–1763. doi: 10.11999/JEIT160860
    TAHAT A, KADDOUM G, YOUSEFI S, et al. A look at the recent wireless positioning techniques with a focus on algorithms for moving receivers[J]. IEEE Access, 2017, 4: 6652–6680. doi: 10.1109/ACCESS.2016.2606486
    INDELMAN V, GURFIL P, RIVLIN E, et al. Real-time vision-aided localization and navigation based on three -view geometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2239–2259. doi: 10.1109/TAES.2012.6237590
    DEMPSTER A G and CETIN E. Interference localization for satellite navigation systems[J]. Proceedings of the IEEE, 2016, 104(6): 1318–1326. doi: 10.1109/jproc.2016.2530814
    FOY W H. Position-location solutions by taylor-series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(2): 187–194. doi: 10.1109/TAES.1976.308294
    HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463. doi: 10.1109/tsp.2004.831921
    KAY S M. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory[M]. Upper Saddle River: Prentice Hall, 1993: 23–45.
    HO K C, LU Xiaoning, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/tsp.2006.885744
    SUM Ming and HO K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3434–3440. doi: 10.1109/TSP.2011.2131135
    WEI Hewen, PENG Rong, WAN Qun, et al. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1677–1688. doi: 10.1109/TSP.2009.2037666
    刘洋, 杨乐, 郭福成, 等. 基于定位误差修正的运动目标TDOA/FDOA无源定位方法[J]. 航空学报, 2015, 36(5): 1617–1626. doi: 10.7527/S1000-6893.2015.0010

    LIU Yang, YANG Le, GUO Fucheng, et al. Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1617–1626. doi: 10.7527/S1000-6893.2015.0010
    NOROOZI A, OVEIS A H, HOSSEINI S M R, et al. Improved algebraic solution for source localization from TDOA and FDOA measurements[J]. IEEE Wireless Communications Letters, 2018, 7(3): 352–355. doi: 10.1109/LWC.2017.2777995
    周恭谦, 杨露菁, 刘忠. 改进的非完全约束加权最小二乘TDOA/FDOA无源定位方法[J]. 系统工程与电子技术, 2018, 40(8): 1686–1692. doi: 10.3969/j.issn.1001-506X.2018.08.03

    ZHOU Gongqian, YANG Luqing, and LIU Zhong. Improved incomplete constrained weighted least squares TDOA/FDOA passive location method[J]. Systems Engineering and Electronics, 2018, 40(8): 1686–1692. doi: 10.3969/j.issn.1001-506X.2018.08.03
    WANG Gang, LI Youming, and ANSARI N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853–862. doi: 10.1109/TVT.2012.2225074
    ZOU Yanbin, LIU Huaping, XIE Wei, et al. Semidefinite programming methods for alleviating sensor position error in TDOA localization[J]. IEEE Access, 2017, 5: 23111–23120. doi: 10.1109/ACCESS.2017.2752206
    ZOU Yanbin, LIU Huaping, and WAN Qun. An iterative method for moving target localization using TDOA and FDOA Measurements[J]. IEEE Access, 2017, 6: 2746–2754. doi: 10.1109/ACCESS.2017.2785182
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 152–160.
    GRANT M, BOYD S, and YE Y. CVX: MATLAB software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx/, 2018.
  • Cited by

    Periodical cited type(8)

    1. 陈保豪,田霖,杨建新,程飞. 基于卷积神经网络的空间导航信号自动抗干扰技术研究. 自动化技术与应用. 2023(11): 98-100+109 .
    2. 唐言,赵知劲,岳克强,郑仕链,王李军. 基于辅助分类器和变分自编码生成对抗网络的干扰识别. 计算机应用与软件. 2023(12): 141-146 .
    3. 黄天禹,李雨锴,杨萌. TETRA通信与干扰信号智能识别技术. 通信技术. 2022(01): 63-69 .
    4. 时艳玲,王磊,李君豪. 基于投影空间下奇异值分解的海面小目标CFAR检测. 系统工程与电子技术. 2022(02): 512-519 .
    5. 刘明骞,高晓腾,李明,朱守中. 空地协同场景下通信干扰智能识别方法. 电子与信息学报. 2022(03): 825-834 . 本站查看
    6. 高峰,熊刚,王思博. 一种对集群通信信号干扰的检测方法研究. 舰船电子对抗. 2022(06): 41-44 .
    7. 孙闽红,陈鑫伟,仇兆炀,滕旭阳. 融合注意力机制的雷达欺骗干扰域适应识别方法. 电子与信息学报. 2022(11): 3891-3899 . 本站查看
    8. 王桂胜,黄国策,王叶群,董淑福,任清华,魏帅. 基于认知驱动的变换域通信智能抗干扰方法. 系统工程与电子技术. 2021(01): 223-231 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (3213) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return