Citation: | Feng ZHAO, Wenjing SUN, Hanqiang LIU, Zhe ZENG. Intuitionistic Fuzzy Clustering Image Segmentation Based on Flower Pollination Optimization with Nearest Neighbor Searching[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1005-1012. doi: 10.11999/JEIT190428 |
In order to overcome shortcomings of the traditional fuzzy clustering algorithm for image segmentation, such as that are easily affected by noise, sensitive to the initial value of clustering center, easily falling into local optimum, and inadequate ability of fuzzy information processing, an intuitionistic fuzzy clustering image segmentation algorithm is proposed based on flower pollination optimization with nearest neighbor searching. Firstly, a novel extraction strategy of image spatial information is proposed, and then an intuitionistic fuzzy clustering objective function with image spatial information is constructed to improve the algorithm’s robustness against noise and enhance the ability of the algorithm to process the image fuzzy information. In order to overcome the defects of sensitivity to clustering centers and easily falling into local optimum, a flower pollination algorithm based on nearest neighbor learning search mechanism is proposed. Experimental results show that the proposed method can get satisfactory segmentation results on a variety of noisy images.
赵凤. 基于模糊聚类的图像分割[M]. 西安: 西安电子科技大学出版社, 2015: 1–5.
ZHAO Feng. Fuzzy Clustering for Image Segmentation[M]. Xi’an: Xidian University Press, 2015: 1–5.
|
GU Jing, JIAO Licheng, YANG Shuyuan, et al. Fuzzy double c-means clustering based on sparse self-representation[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 612–626. doi: 10.1109/TFUZZ.2017.2686804
|
BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191–203. doi: 10.1016/0098-3004(84)90020-7
|
KRINIDIS S and CHATZIS V. A robust fuzzy local information c-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328–1337. doi: 10.1109/TIP.2010.2040763
|
GUO Fangfang, WANG Xiuxiu, and SHEN Jie. Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation[J]. IET Image Processing, 2016, 10(4): 272–279. doi: 10.1049/iet-ipr.2015.0236
|
LI M Q, XU L P, XU Na, et al. SAR image segmentation based on improved grey wolf optimization algorithm and fuzzy c-means[J]. Mathematical Problems in Engineering, 2018: 4576015. doi: 10.1155/2018/4576015
|
YANG Xinshe. Flower pollination algorithm for global optimization[C]. The 11th International Conference on Unconventional Computing and Natural Computation, Orléan, France, 2012: 240–249. doi: 10.1007/978-3-642-32894-7_27.
|
WANG Rui, ZHOU Yongquan, QIAO Shilei, et al. Flower pollination algorithm with bee pollinator for cluster analysis[J]. Information Processing Letters, 2016, 116(1): 1–14. doi: 10.1016/j.ipl.2015.08.007
|
ALYASSERI Z A A, KHADER A T, AL-BETAR M A, et al. Variants of the Flower Pollination Algorithm: A Review[M]. YANG Xinshe. Nature-Inspired Algorithms and Applied Optimization. Cham: Springer, 2018: 91–118. doi: 10.1007/978-3-319-67669-2_5.
|
KOWALSKI P A, ŁUKASIK S, CHARYTANOWICZ M, et al. Nature Inspired Clustering-use Cases of Krill Herd Algorithm and Flower Pollination Algorithm[M]. KÓCZY L T, MEDINA-MORENO J, and RAMÍREZ-POUSSA E. Interactions between Computational Intelligence and Mathematics Part 2. Cham: Springer, 2019: 83–98. doi: 10.1007/978-3-030-01632-6_6.
|
CUI Weijia and HE Yuzhu. Biological flower pollination algorithm with orthogonal learning strategy and catfish effect mechanism for global optimization problems[J]. Mathematical Problems in Engineering, 2018: 6906295. doi: 10.1155/2018/6906295
|
ATANASSOV K and GARGOV G. Interval valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 31(3): 343–349. doi: 10.1016/0165-0114(89)90205-4
|
CHAIRA T. A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images[J]. Applied Soft Computing, 2011, 11(2): 1711–1717. doi: 10.1016/j.asoc.2010.05.005
|
VERMA H, AGRAWAL R K, and SHARAN A. An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation[J]. Applied Soft Computing, 2016, 46: 543–557. doi: 10.1016/j.asoc.2015.12.022
|
YAGER R R. On the measure of fuzziness and negation. II. Lattices[J]. Information and Control, 1980, 44(3): 236–260. doi: 10.1016/S0019-9958(80)90156-4
|
WOODS R E and GONZALEZ R C. Real-time digital image enhancement[J]. Proceedings of the IEEE, 1981, 69(5): 643–654. doi: 10.1109/PROC.1981.12031
|
HUYNH-THU Q and GHANBARI M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates[J]. Telecommunication Systems, 2012, 49(1): 35–48. doi: 10.1007/s11235-010-9351-x
|
ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175–185.
|
吕振肃, 侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报, 2004, 32(3): 416–420. doi: 10.3321/j.issn:0372-2112.2004.03.016
LÜ Zhensu and HOU Zhirong. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3): 416–420. doi: 10.3321/j.issn:0372-2112.2004.03.016
|